美国激光核聚变:算多大事儿?

传感器技术 2023-01-09 07:00

人类的能量,归根结底来自太阳,石油、煤炭、天然气,包括食物(除了核能、地热能等少数能源)。地球就是个大号的太阳能电池,充电四十亿年,就为我们这几百年的挥霍。追根溯源,太阳的能量又从哪里来?恒星演化是一部氢原子和引力的抗争史,其能量主要来自氢核聚变。
当人们认识到,宇宙间的能量,无非就是粒子的分分合合,石油充其量只能算个四级经销商,那么莫不如直接从粒子那里搞批发,自己拧原子核,于是就出现了“可控核聚变”的概念。
可以这么理解,聚变发电=无限的电。电真是个好东西,这个世界上还有什么事情是廉价的电解决不了的吗?如果有,那就用免费的电!电一旦不要钱,它的用途会比你想象中多得多。
比如环保问题将不复存在,无论是白色塑料,还是废水废气,直接加热到1万度,让所有化学键灰飞烟灭,把所有原子打回离子状态,再拾掇拾掇就成了纯单质,又成了工业原料。再比如水资源问题,把海水蒸馏淡化,通过绵延几千千米的水泵和水管,能送到地球上任何地方,在沙漠养鱼都不费事。还比如温室效应,有研究说,二氧化碳含量是调节地球温度的关键,如果你嫌地球太热了,就把空气中的二氧化碳大量合成有机物,中国科学家已经成功用二氧化碳合成了淀粉、葡萄糖、脂肪酸等等;反之,就多释放一些二氧化碳,根据这个原理,人类可以建造一台行星级别的大空调,随意调节地球温度。
如果电力足够,来看组公式:
元素=设备+电力;
设备=材料+设备+电力;
材料=元素+设备+电力;
制造业=材料+设备+电力;
不考虑物理空间和人工成本,制造任何东西,仅仅只需消耗——电力。刚刚说什么来着,用电不要钱?
总之,可控核聚变的前景棒棒的,所以这条路上的任何进展都不算小事儿,但咱非要从中挑几件事儿当路标,那么美国这次激光打靶算得上吗?
两条路
原子核带正电,2个原子核越靠近排斥力越大,但你又没法捏着原子核把它们拧成一团,所以通常就是让它们高速相撞,只要速度足够快,就可以抵消这个排斥力,拧成一个核。这原理够简单吧!
温度是什么?温度的本质就是粒子的运动速度,为了让原子核拥有足够的速度相撞,就需要足够的温度,所以拧原子核都很烫!这原理也不难吧?
如果只有2个原子核,就是速度再快也撞不到一起,因此单位体积内的原子核越多越好。实在密度不足的,就多维持一段时间,时间长了,总有不长眼的原子核会撞到一起。原子核密度体现在宏观参数上就是压强,密度越大压强就越大。这原理也能明白吧?
温度、密度以及维持的时间,这三者必须满足特定的条件,这叫“劳逊判据”。满足劳逊判据,聚变产生的能量就能维持聚变自身拧原子核消耗的能量,聚变才会持续下去,这个俗称聚变点火。
人类目前可用的有4种聚变反应:
其中最容易实现的就是氘氚(D-T)反应,你只要把一堆氘氚放一起,狠狠加热或者狠狠加压,就能把氘氚原子拧成氦原子,实现聚变反应。
原理有了,咱再定个衡量指标,把“输出能量/输入能量”的比值叫做“Q值”,Q大于1就意味着“输出大于输入”。算上成本,烧锅炉的汽轮机“热电效率”在40%-70%,胡乱再算一些损耗,暂且认为Q=2.5是成本价。商业应用都比较黑,一般认为要Q>30才值得推广。划分一下几个关键点:
Q>0,实现聚变反应,原理性突破标志。
Q>1.0,输出能量大于输入能量,“盈亏平衡”突破标志。
Q>2.5,输出能量转化为电能后仍大于输入能量,“实用化”突破标志。
Q>30,输出能量转化为电能后可实现盈利,“商业化”突破标志。
到了这里,哥们儿,恭喜你,聚变成功啦!
原理有了,目标也有了,那么接下来事情该怎么办呢?有两条路。
惯性约束
用N束激光从四面八方围着一个芝麻大小的氘氚球打,瞬间将原子核挤成高温高压,达到聚变条件,俗称“激光打靶”,学名“惯性约束”。打完之后,换上另一粒芝麻,继续打。
美国国家点火装置(NIF),可在一瞬间将上兆焦耳的能量通过192束激光打在一粒芝麻上,当之无愧的全球最强激光打靶装置,自2010年正式点火后,一路连刷纪录。2022年12月5日,在激光向目标输送2.05 兆焦耳的能量后,聚变反应产生了3.15 兆焦耳的能量输出,短暂地实现了聚变点火。
但问题是,这样一阵一阵,怎么做到持续稳定发电呢?
先别管发电的事了,有没有觉得这粒芝麻像一个迷你氢弹?如果激光打靶真打利索了,以后氢弹就不用原子弹引爆了,纯聚变弹水到渠成。即便打不利索,研究一下核爆过程,也更有利于氢弹结构的优化。
这可真是个伤心的故事,说好从良的,走着走着又走回打家劫舍的老路了。
从应用上说,激光核聚变很难走到最后的发电阶段,激光器本身是一种能量利用率很低的装置,美国人虽然用2.05M的输入能量产生了3.15M的输出能量,但为了产生这2.05M的激光能量,却消耗了300M的电能,这本帐亏到姥姥家了。
正因为如此,很多人指责美国国家点火装置(NIF)就是个骗经费的玩意儿。其实话不能这么说,自从五大流氓一起签署了《全面禁止核试验条约》,谁也没脸光明正大搞核爆试验,从这个角度讲,激光打靶还是一个不错的补充,毕竟煮茶叶蛋的手艺是永无止境的,总有改善的余地。
除了前面狂奔的美国,后面的法国兆焦耳(LMJ)、中国“神光”系列、日本GEKKO XII也都没闲着,只是新闻上得少,毕竟和氢弹沾着边,不方便大张旗鼓。
因为激光打靶始终逃不掉氢弹的影子,所以即便把Q值刷到1以上,其意义也没那么惊世骇俗。道理很简单,如果把引爆氢弹的能量看作输入能量,氢弹爆炸的能量看作输出能量,那么氢弹的Q值早就刷到天上去了。
想要让核聚变沦为开水工发电,还得指望第二条路。

磁约束

到了一亿摄氏度,原子核和电子早被打散了,成了“等离子体”,没了电子的氢核带正电,正好可以被磁场约束,然后用强大的磁场把原子核拧到一起,所以研究聚变的单位经常叫“某某等离子体研究所”。
磁约束根据不同的结构特点,也分好几种。

托卡马克

托卡马克是俄语,可见当年苏联对这个领域的贡献,是从0到1的先驱者。托卡马克的磁约束特征:纵向线圈和极向线圈非常分明,纵向磁场完全由外部的线圈提供,极向磁场由线圈和等离子体电流产生,两个磁场共同约束等离子体。等离子体有电阻,可以利用“欧姆效应”加热,也就是用感应电流给等离子体通电,而且通电后的等离子体相当于一个线圈,还会产生磁场。不过温度升高后欧姆加热效率降低,后期还要辅助加热手段,比如射频波共振加热、中性束注入加热等等。
这就是托卡马克的大概原理:利用线圈和等离子体电流产生磁场,利用磁场约束氘氚,利用感应电流和其他手段狠狠加热。
原理看起来还挺靠谱的,那么Q值刷得怎么样了?
首先上路的是苏联,托卡马克和他们的坦克取一个名,T字头。1958年上T-1,挂了;1960年上T-2,也挂了;1964年上T-3,几经升级终于在1968年有了能量输出,人类第一次刷到了Q值,虽然只有十亿分之一,但至少证明路子是可行的。一时间托卡马克风光无限,T-7、T-10、T-12、T-15一一上马,欧美日等国纷纷跟进,中国也咬着牙跟上了。
进入20世纪80年代,大家觉得路子摸得差不多,该动真格了,于是,建造了一堆大型托卡马克,准备上真正的氘氚反应。
1991年,欧洲联合环(JET)实现了史上第一次氘氚(D-T)反应,持续了2秒,Q值0.12。1993年,美国的托卡马克聚变测试反应堆(TFTR)把Q值刷到了0.28。1997年,欧洲联合环又刷出了0.67的历史新高度。随后,日本的JT-60成功进行了氘氘(D-D)反应,换算回氘氚(D-T)反应的Q值相当于1.25,但是换算的价值打成了骨折,Q值基本不算数。
最来劲的还是苏联,当别人还在玩铜线的时候,苏联的T-7就用上了超导,因为磁场是电流产生的,强大的磁场意味着强大的电流,强大的电流非超导莫属。T-7没折腾几年,又开始建造更大的T-15,各项设计参数刷到爆,1988年完工。不过一看这时间点就知道T-15会面临什么命运了,苏联崩溃对苏联的聚变事业造成了毁灭性打击,大量人才流失,项目停滞,很多聚变装置都当破铜烂铁处理,白白浪费了雄厚的科研积累。
虽然T-15没赶上90年代红红火火的刷Q值潮流,但凭借傲人的设计,依然和欧洲联合环、美国TFTR、日本JT-60,并列为当年的四大宗师。相比来说,中国就只能低调了,默默折腾自己的小装备,环流器一号(HL-1)和CT-6,主要成果就是,培养人才。
江湖上除了大宗师,还有不少八九段的高手。法国的Tore-supra是世界上第一个真正实现高参数准稳态运行的装置,放电时间长达120秒。这里所谓的“放电”不是发电的意思,仅仅指把氘电离成等离子体,只是聚变反应的第一步,但依然非常了不起。要知道,三大宗师虽然刷到了Q值,但持续时间都只有几秒钟。还有德国的ASDEX-U、TEXTOR也实力不俗,刷出不少纪录。很多工业强国都来凑过热闹,前前后后全球累计造了几十个聚变堆。
形势看起来很不错啊!然后呢?
然后,大家很快把钱刷完了,发现可控核聚变在五十年内都榨不出油水,不愿继续充值,陆续关闭了一批托卡马克。之后二十年,别说Q值,连D-T反应都嫌贵,不做了。Q值纪录就停留在1997年的0.67。

ITER

但事关人类未来1亿年的大计,不能撂挑子啊!于是,美苏欧日一合计,不如组团吧,国际热核聚变实验堆计划(ITER)由此诞生。
用脚趾头想想就知道,这几家要是能合伙顺利办事,太阳就要从四面八方出来了,不出意外地,吵成了一锅粥。不过,面对天文数字般的预算,还是达成了一个共识:找人分担。外加中国、韩国的积极争取,两国由此也加入了ITER计划。
这么伟大的项目,放哪里呢?日本主动请缨,只要ITER落户日本,出钱可以出大头!客观地说,日本条件确实不错,技术也相当彪悍,美国、韩国表示支持。无奈法国人天生自带幸运光环,说道“我家气候好,放我家吧”!欧盟自然是帮亲不帮理,啥也别说了,这事必须在欧洲办。法俄的关系,要不是乌克兰问题,“西北风级两栖攻击舰”购买合同早就执行完成了,你说他俩能差吗?中方态度就更不用说了,使劲给法国撑腰。最后,欧盟直接宣布:无论结果怎么样,我们年底就直接在法国开建了。
美日没辙,最终ITER花落法国,欧盟出一半经费,同时给日本不少补偿条件。不过,这么大一事,少了宇宙大国印度好像也不合适,于是,半年后印度拎着钱袋子兴冲冲加入了ITER。各方于2006年签字画押,标志着ITER计划进入全面实施的准备阶段。
然后……我们就见识到了什么是真正的磨洋工。ITER贵为仅次于国际空间站的全球第二大科研合作项目,牛皮吹得相当大:Q值超过10,输出能量功率500兆瓦,达到实用化水平。但是,进度十年十年往后延,眼看着牛皮就要吹破了。
关键时刻,原先一个默默无闻的菜鸟,不声不响跻身大宗师行列了,对众人说道,“要不,让我来试试?”这就是中国核聚变的故事。

EAST

中国的家底我们都清楚,苦哈哈出身,70年代硬着头皮上了第一台托卡马克CT-6,接着又上了环流器一号(HL-1),还有HT-6、HT-6B、HL1M、环流器二号(HL-2),都是练手的小号,只能排在人家后面。在欧美风风火火刷Q值的90年代,别说聚变了,就是彩电我们都造不了。
后来人算不如天算,苏联突然崩了!中国有幸捡漏成功,把T-7捎走了,就是那台超导托卡马克,本着人道主义关怀,顺便把几个下岗专家也捎了回来。之后做了不少升级,改名HT-7(合肥超环)。围着这台二手炉子苦练二十年,终于神功大成,2006年,世界第一台全超导托卡马克核聚变实验装置(Experimental and Advanced Superconducting Tokamak,EAST)横空出世(别人都是部分线圈超导)。
全超导,一看这出身,大家就不敢小瞧了。以往“世界聚变能大会”都是欧洲、美国、日本在台上当主角,我们坐后排流口水,EAST出来后,大会直接就搬到了中国召开。
2006年,EAST开始全面刷纪录,而且行事颇有章法,并不直接追求Q值,官方定义是:研究等离子体稳态约束的可行性。也就是说,先让等离子体长时间保持1亿度以上,不着急进行聚变反应。在稳态运行方面,EAST屡屡创下世界纪录,1.2亿度维持101秒,1.6亿度维持20秒,7000万度维持1056秒。
凭这把成绩,在地球上已经找不到对手了。为了打败合肥的EAST,规模更大、参数更高的中国环流器二号M装置(HL-2M)于2020年12月在成都建成并实现首次放电,这一手左右互搏的功夫,看得众人是羡慕不已。
不得不佩服中国“引进、吸收、再消化”的能力,山寨也好创新也罢,事实就是,中国通过苏联的T-7,一下子就翻身农奴把歌唱了!这个故事充分说明,人类团结还是很有必要的。

在托卡马克硬件建设方面,中国同样担得起“基建狂魔”的称号。ITER打算2025年实现点火,很大一部分原因是中国承担了大量核心关键部件的制造及安装任务,包括校正场线圈、环向场线圈导体、极向场线圈导体、磁体馈线系统、包层第一壁、包层屏蔽模块、诊断系统等等,有些任务是全包了,有些是做一部分。不吹牛地说,现在的ITER总装工作,中国是中流砥柱。(悄悄说一句:这些都是收费的。)
当然,光靠我们一家是不够的,ITER有100多万个部件,总重达2.3万吨(EAST重400吨),全球35个主要工业国都没闲着。二十多年没开张的欧洲联合环,于2021年12月再次进行了一轮昂贵的氘氚(D-T)反应,1.5亿度的氘和氚保持了5秒钟,聚变反应释放了59兆焦耳的能量,刷新了输出能量的世界纪录,为即将投入试运行的ITER进行铺路实验;美国负责制造的磁铁堪称世界之最,可以把航母吸上天;日本提供了三四百吨的大型超导线圈,实力也不弱……
ITER虽有诸多不顺,但仍不失为全人类精诚合作的象征,点个赞吧。

仿星器

下面轮到磁约束的第二种类型:仿星器。
无论EAST怎么刷纪录,依然无法改变托卡马克的缺点:太复杂。依靠外部线圈和等离子体电流产生的耦合磁场,一起约束等离子体,这样的设计非常微妙,一旦出现扰动,瞬间就会放大,导致系统崩溃。
其实一开始大家就觉得托卡马克很棘手,所以苏联想出托卡马克的时候,“仿星器”的设计也差不多时间提出来。仿星器的思路是:所有的磁场都是外部线圈提供,不用等离子体电流瞎掺和,所以只要保持线圈的稳定,磁场就能稳定,这样当然就提高了系统的稳定性。
想法很好,可是聚变等离子体诡异的特性,使得磁场分布也很诡异,进而导致线圈也设计得非常诡异。
仿星器原理示意图(蓝色是线圈,黄色是等离子体,绿色线是磁感线)
早期计算机的模拟能力差,而且线圈加工难度也很大,诡异的线圈最终产生什么样的磁场全靠缘分,所以仿星器一开始就不热门。欧洲、美国、苏联、日本都玩过仿星器,后来苏联把托卡马克玩出Q值后,仿星器失宠就更严重了,美国甚至还把仿星器直接改成了托卡马克。中国最早也玩过仿星器,后来拿到苏联的T-7之后,直接打入冷宫。
再后来,时来运转,随着托卡马克陷入瓶颈,超级计算机的性能跟火箭似的上蹿,不就算一算磁场分布嘛,没问题啊!
于是,当年仿星器的大玩家德国又重操旧业了,世界上最大的仿星器文德尔施泰因(Wendelstein)7-X于2015年实现点火,日本、美国、澳大利亚、西班牙也都在这条路上蹚,但都没有大手笔。不管仿星器能不能刷Q值,人类的聚变事业多一项选择总归不是坏事。
反场箍缩
磁约束还有第三条路:反场箍缩。大致原理是:纵向磁场由外部线圈产生,极向磁场则完全由等离子体电流产生。这样系统结构更为简单,个头小了很多,省钱。
不过,目前来看这路子也好不到哪里去,美国练了快20年反场箍缩,约束时间还停留在毫秒级(托卡马克已经几百秒了),中国的“科大一环”、意大利的RFX、日本的TPE-RX、瑞典的EXTRAP-T2R也全都在萌芽状态。
苦练神功二十年,连“拳打北方幼儿园,脚踢南方敬老院”都做不到,大家又是一片哀号之声。
托卡马克、仿星器、反场箍缩,除了这三条路之外,其实还有很多办法可以约束等离子体,但因为实用性过于寒碜,连名字都不想提了。

还需五十年

苏联物理学家列夫·阿尔齐莫维奇(Lev Artsimovich)说过一句至理名言:“当整个社会都需要的时候,聚变就会实现。”可控核聚变虽然困难重重,但不可否认,我们也不算认真对待,全球每年的化妆品研发费用都超过了核聚变研发费用,可见面子比里子重要。
ITER计划2025年实现点火,2035年开始氘氚反应实验,即便一切顺利,ITER也只是一个实验聚变堆,无法发电。想要发电还得重新建一个商业聚变堆,时间就不好说了,真是应了那句玩笑:可控核聚变还需五十年。
这节奏中国实在看不下去了,原本打算等ITER有了收获再动手,现在看来是不想等了。2017年,中国聚变工程实验堆项目(CFETR)正式启动,计划2035年建成聚变工程实验堆,2050年建成聚变商业示范堆,实现聚变发电!
这下好歹算有个盼头了,聚变虐我千百遍,我待聚变如初恋,再等三十年,让我们看看中国聚变堆最终能否修成正果!

  

免责声明:本文版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。 

  

 

为您发布产品,请点击“阅读原文”

 


传感器技术 制造业的未来是智能化,智能化的基础就是传感器; 互联网的方向是物联网,物联网的基石也是传感器; 关注传感器技术,获得技术资讯、产品应用、市场机会,掌握最黑科技,为中国工业导航。
评论
  • 全球智能电视时代来临这年头若是消费者想随意地从各个通路中选购电视时,不难发现目前市场上的产品都已是具有智能联网功能的智能电视了,可以宣告智能电视的普及时代已到临!Google从2021年开始大力推广Google TV(即原Android TV的升级版),其他各大品牌商也都跟进推出搭载Google TV操作系统的机种,除了Google TV外,LG、Samsung、Panasonic等大厂牌也开发出自家的智能电视平台,可以看出各家业者都一致地看好这块大饼。智能电视的Wi-Fi连线怎么消失了?智能电
    百佳泰测试实验室 2024-12-12 17:33 77浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 123浏览
  • 应用环境与极具挑战性的测试需求在服务器制造领域里,系统整合测试(System Integration Test;SIT)是确保产品质量和性能的关键步骤。随着服务器系统的复杂性不断提升,包括:多种硬件组件、操作系统、虚拟化平台以及各种应用程序和服务的整合,服务器制造商面临着更有挑战性的测试需求。这些挑战主要体现在以下五个方面:1. 硬件和软件的高度整合:现代服务器通常包括多个处理器、内存模块、储存设备和网络接口。这些硬件组件必须与操作系统及应用软件无缝整合。SIT测试可以帮助制造商确保这些不同组件
    百佳泰测试实验室 2024-12-12 17:45 84浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 71浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 81浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 98浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 91浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 93浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-12 10:13 55浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 119浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 94浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-12 10:27 90浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦