快速排序到底有多快?(含代码分析、9大排序算法并行运行对比视频)

嵌入式客栈 2020-06-02 00:00
关注、星标 嵌入式客栈 ,干货及时送达

[导读] 前面文章《聊聊改变世界的5大算法》,一文中提到快速排序算法对世界影响巨大,估计很多人不以为然,本文来尝试解读一下为啥。

快排有多快

说到快我只推崇葵花宝典,那叫一个快啊~~~

皮一下哈哈,言归正传。快速排序算法如其名一样,快!来看看快排和其他几大排序算法的并行运行对比视频(中间那个就是快排),你就知道它到底有多快了,请全屏横屏播放更清晰:

啥是快排?

分治思想

  • 从待排元素集中选取一个元素作为摆动基准pivot,pivot这词比较形象,如上图像一个轴一样在摆动。记为P
  • 将元素重新排列为3个子块:
  1. 左子块S1:由 P的元素组成
  2. 中间块M:仅有P一个元素
  3. 右子块S2:由≥P的元素组成
  • 对左子块S1和右子块S2递归地重复上述过程,Return {quicksort(S 1 ), P, quicksort(S 2 )}.
  • 代码实现

    代码如下:

    typedef int T_ELEMENT;
    int partition(T_ELEMENT A[ ], int left, int right);
    /* sort A[left..right] */
    void quicksort(T_ELEMENT A[ ], int left, int right)
    {  
      int q;
      if( right <= left )
          return;
      if ( right > left )
      {  
         q = partition(A, left, right);
         /* partition分块后 */
         //-> A[left..q-1] ≤ A[q] ≤ A[q+1..right]
         quicksort(A, left, q-1);     
         quicksort(A, q+1, right);
       } 
    }

    int partition(T_ELEMENT A[], int left, int right);

        T_ELEMENT P = A[left];
        i = left;
        j = right + 1;
        /*无限循环,使用break退出*/
        for(;;) 
        { 
            while (A[++i] < P) if (i >= right) break;
            /* 此时 A[i] ≥ P */
            while (A[--j] > P) if (j <= left) break;
            /* 此时 A[j] ≤ P */
            if (i >= j ) break/*退出for循环*/
            else swap(A[i], A[j]); 
        }
        if (j == left) return j ;
        swap(A[left], A[j]);
        return j;
    }

    举栗子分析:

    分成三块了,再递归子块迭代,直到right<=left. 这里放一个全过程慢镜头动图,帮助理解:

    算法分析

    • 这种快速排序的优点是我们可以“就地”排序,即无需依赖于输入大小的临时缓冲区。没有缓冲区内存开销,仅有栈开销。(注还有一种非递归的栈实现版本,本文就先不聊了)
    • partition步骤:时间复杂度为θ(n)。
    • 快速排序涉及分区和2个递归调用。故:

    T(n) = θ(n) + T(i) + T(n-i-1) = cn+ T(i) + T(n-i-1)

    其中,i是分区后第一个子块的大小,将T(0)=T(1)= 1作为初始条件。

    • 具体运行时间对不同特性的待排数据,其结果差异比较大,来看一下最好、最坏以及平均情况分析。

    最差情况

    • 当待排数据序列为正序或者逆序时,pivot将是在大小为n的待排块时中的最小(或最大)元素时。则阶段1迭代中生成一个空子块、pivot,及一个大小(n-1)的子块,则时间复杂度为θ(n)
    • 递归方程:

    如果这种情况在每个分区中都重复发生,那么每个递归调用处理一个比前一个列表小1的列表。因此需要在达到大小为1的列表之前进行n - 1次嵌套调用。这意味着调用树是n - 1个嵌套调用的线性链。第i次调用需要做O(n-i)复杂度来进行分区,则

    最好情况

    • 如每次分区时枢轴(pivot)都能取到中间值,即每次分区后,将产生两个大小大致相等的子块,并且枢轴(pivot)元素处于中间值位置,需要做n次比较运算。

    • 递归方程:


    如前所说,如每次执行分区时,都能将列表分成两个几乎相等的两个子块。这意味着每次递归调用都要处理一个只有一半大小的列表。因此,在到达大小为1的列表之前,我们只能进行 嵌套调用。这意味着调用树的深度为 ,但是在调用树的同一级别上没有两个调用处理原始列表的相同部分;因此,每个级别的调用总共只需要O(n)个时间(每个调用都有一些固定的开销,但是由于每个级别上只有O(n)个调用,所以这被包含在O(n)因子中)。结果是,该算法只使用c(n log n)的时间。故时间复杂度为O(n log n)。

    平均情况

    要对n个不同元素的数组进行排序,快速排序需要O(n log n)的预期时间,推导很枯燥就不罗嗦了。

    其他排序算法

    图片来自wikipedia:

    注:快排不需要额外的缓冲区开销,但是需要栈开销,其空间复杂度为O(log n).

    这里对上表其中几个效率相对较高的做个简要介绍,后面如有机会再深入学习总结:

    • Introsort内省排序,在C++ STL中有应用。内省排序(英语:Introsort)是由David Musser在1997年设计的排序算法。这个排序算法首先从快速排序开始,当递归深度超过一定深度(深度为排序元素数量的对数值)后转为堆排序。采用这个方法,内省排序既能在常规数据集上实现快速排序的高性能,又能在最坏情况下仍保持O(n log n) 的时间复杂度。由于这两种算法都属于比较排序算法,所以内省排序也是一个比较排序算法。

    • Timsort排序算法:是一种混合稳定排序算法,它是从合并排序和插入排序中派生而来的,旨在对多种实际数据表现良好。由Tim Peters在2002年实现,用于Python编程语言。该算法查找已排序(运行)的数据的子序列,并使用它们对其余部分进行更有效的排序。这是通过合并运行直到满足特定条件来完成的。自2.3版以来,Timsort一直是Python的标准排序算法。还应用在Android平台上的Java SE 7、GNU Octave(是一个开源的类MATLAB数序软件)、V8(开源Java script引擎)以及Swift中,用于对非原始类型的数组进行排序。

    • MergeSort归并排序:在计算机科学中,是一种高效的,通用的,基于比较的排序算法。大多数实现产生稳定的排序,这意味着相等元素的顺序在输入和输出中是相同的。归并排序是约翰·冯·诺伊曼(John von Neumann)在1945年发明的分而治之算法。早在1948年,Goldstine和von Neumann的报告就对自下而上的合并排序进行了详细描述和分析。


    • Tournament sort:通过使用优先级队列来查找排序中的下一个元素,它改进了选择排序。在原始的选择排序中,需要O(n)个操作才能选择n个元素中的下一个元素;在锦标赛排序中,需要进行O(log n)运算(在O(n)中建立初始锦标赛之后)。锦标赛排序是堆排序的一种变体。

    • 树形选择排序又称锦标赛排序(Tournament Sort:是一种按照锦标赛的思想进行选择排序的方法。首先对n个记录的关键字进行两两比较,然后在 个较小者之间再进行两两比较,如此重复,直至选出最小的记录为止。

    • 块排序或块合并排序Block sort: 它将至少两个合并操作与插入排序组合在一起,以达到O(n log n)的位置稳定排序。合并两个排序的列表,A和B,等价于将A分成大小相等的块,在特殊规则下将每个块插入到B中,并合并AB对。


    • 平滑排序smoothsort,是一种基于比较的排序算法。它是堆排序的一种变体,由Edsger Dijkstra于1981年发明并发布。它的时间复杂度上限是O(n log n),但它不是一个稳定的排序。平滑排序的优点是,如果输入已经排序到一定程度,那么它会更接近O(n)的时间,而堆排序的平均值是O(n log n),而不管初始排序状态如何。


    • 希尔排序Shellsort,也称为Shell排序或Shell的方法,是一种就地比较排序。它可以被看作是交换排序(冒泡排序)或插入排序(插入排序)的泛化。该方法首先对彼此相距很远的元素对进行排序,然后逐步缩小要比较的元素之间的差距。通过从相隔很远的元素开始,它可以比简单的最近邻交换更快地将一些位置错误的元素移动到正确的位置。Donald Shell在1959年出版了第一个版本。Shellsort的运行时间很大程度上依赖于它使用的间隙序列。

    算法应用

    说到排序算法复杂度,请一定要与应用场景结合。主要需要考虑待排数据的集的尺寸,如果数据量小的时候反而是插入排序算法应用最为广泛;而对于海量数据场合,则应使用渐近有效排序策略。这是什么意思呢?说白了就是常使用混合算法!主要策略是利用快速排序、堆排序或归并排序将整体快速分治排序,同时对递归底部的小列表采用插入排序。事实上,在实际应用中有更复杂的变体,例如在Android,Java和Python中使用的Timsort(合并排序,插入排序和其他逻辑),以及在某些C++中用的introsort(快速排序和堆排序) 在.NET中排序实现。

    再说白一点,在海量数据场景,利用快速排序、堆排序或归并排序将海量数据快速迭代成收敛的小块,而在小块中采用最为常见的插入排序尽快完成小块排序,小块中采用插入排序则可以更大程度减少递归深度。

    总结一下

    在信息时代,有海量信息需要处理,即便有非常强劲的处理器,但如没有很好的算法,仍然无法满足对这些信息的处理。在处理过程中,免不了要进行信息进行排序,快排在时空两个维度的开销都比较均衡,大量的应用软件、开发工具以及软件包都基于快排做了大量的应用。所以说快速排序改变世界,个人认为并不为过。同时对于求职面试,快速排序算法也是高频面试主题,值得深入研究掌握。

    原创不易,如觉得本文有价值,请点再看或者分享给身边的小伙伴,让更多看到。

    END

    往期精彩推荐,点击即可阅读




    Linux内核中I2C总线及设备长啥样?  [强烈推荐]
    学习AI之机器学习概念篇
    手把手教系列之IIR数字滤波器设计实现

    嵌入式客栈 欢迎关注嵌入式客栈,主要分享嵌入式Linux系统构建、嵌入式linux驱动开发、单片机技术、FPGA开发、信号处理、工业通讯等技术主题。欢迎关注,一起交流,一起进步!
    评论
    • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
      优思学院 2025-01-09 15:48 102浏览
    • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
      百佳泰测试实验室 2025-01-09 17:33 124浏览
    • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
      GIRtina 2025-01-09 10:35 100浏览
    • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
      北汇信息 2025-01-09 11:24 103浏览
    • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
      优思学院 2025-01-09 11:48 115浏览
    • 车机导航有看没有懂?智能汽车语系在地化不可轻忽!随着智能汽车市场全球化的蓬勃发展,近年来不同国家地区的「Automotive Localization」(汽车在地化)布局成为兵家必争之地,同时也是车厂在各国当地市场非常关键的营销利器。汽车在地化过程中举足轻重的「汽车语系在地化」,则是透过智能汽车产品文字与服务内容的设计订制,以对应不同国家地区用户的使用习惯偏好,除了让当地车主更能清楚理解车辆功能,也能进一步提高品牌满意度。客户问题与难处某车厂客户预计在台湾市场推出新一代车款,却由于车机导航开发人
      百佳泰测试实验室 2025-01-09 17:47 30浏览
    • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
      百佳泰测试实验室 2025-01-09 17:35 115浏览
    • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
      物吾悟小通 2025-01-08 18:17 87浏览
    • 1月9日,在2025国际消费电子展览会(CES)期间,广和通发布集智能语音交互及翻译、4G/5G全球漫游、随身热点、智能娱乐、充电续航等功能于一体的AI Buddy(AI陪伴)产品及解决方案,创新AI智能终端新品类。AI Buddy是一款信用卡尺寸的掌中轻薄智能设备,为用户带来实时翻译、个性化AI语音交互助手、AI影像识别、多模型账户服务、漫游资费服务、快速入网注册等高品质体验。为丰富用户视觉、听觉的智能化体验,AI Buddy通过蓝牙、Wi-Fi可配套OWS耳机、智能眼镜、智能音箱、智能手环遥
      物吾悟小通 2025-01-09 18:21 38浏览
    • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
      晶台光耦 2025-01-09 09:58 83浏览
    • Snyk 是一家为开发人员提供安全平台的公司,致力于协助他们构建安全的应用程序,并为安全团队提供应对数字世界挑战的工具。以下为 Snyk 如何通过 CircleCI 实现其“交付”使命的案例分析。一、Snyk 的挑战随着客户对安全工具需求的不断增长,Snyk 的开发团队面临多重挑战:加速交付的需求:Snyk 的核心目标是为开发者提供更快、更可靠的安全解决方案,但他们的现有 CI/CD 工具(TravisCI)运行缓慢,无法满足快速开发和部署的要求。扩展能力不足:随着团队规模和代码库的不断扩大,S
      艾体宝IT 2025-01-10 15:52 51浏览
    • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
      康谋 2025-01-09 10:04 99浏览
    我要评论
    0
    点击右上角,分享到朋友圈 我知道啦
    请使用浏览器分享功能 我知道啦