作者:Jeff Shepard,Digi-Key 北美编辑;文章来源:Digikey网站
许多应用对机器视觉的需求在不断增长,包括安防、交通和城市摄像头、零售分析、自动检测、过程控制和视觉引导机器人技术。实现机器视觉是一个复杂的过程,需要整合不同的技术和子系统,包括高性能硬件和先进的人工智能/机器学习 (AI/ML) 软件。机器视觉从优化视频采集技术和视觉 I/O 以满足应用需求开始,并延伸到多个图像处理管道以实现高效连接。机器视觉最终取决于嵌入式视觉系统是否能够通过高性能硬件执行基于视觉的实时分析。这些硬件如现场可编程门阵列 (FPGA)、系统级模块 (SOM)、系统级芯片 (SoC),甚至是运行所需的 AI/ML 图像处理和识别软件的系统级芯片上多处理器系统 (MPSoC)。这可能是一个复杂、昂贵且耗时的过程,可能会频繁导致成本超支、进度延误。
与其从头开始,设计者还不如采用一种经过精心策划的高性能开发平台,从而在加快上市时间、控制成本并降低开发风险的同时,支持应用实现高度灵活性和高性能。基于 SOM 的开发平台可以提供集成硬件和软件环境,让开发人员专注于应用定制并节省多达九个月的开发时间。除了开发环境外,同样的 SOM 架构还可用于商业和工业环境下的生产优化配置,以提高应用的可靠性和质量,进一步降低风险并加快上市时间。
本文首先回顾与开发高性能机器视觉系统有关的挑战,然后介绍 AMD Xilinx 的 Kria KV260 视觉 AI 入门套件提供的全面开发环境,最后以基于 Kira 26 平台设计的即用型 SOM 为例进行介绍。该平台用于插入带有特定解决方案外设的载板。