全解GPU软件生态、场景、发展与局限性

智能计算芯世界 2023-01-06 00:00


GPU作为一种协处理器,传统用途主要是处理图像类并行计算任务;计算机系统面对的计算任务有着复杂而不同的性能要求,当 CPU 无法满足特定处理任务时,则需要一个针对性的协处理器辅助计算。GPU 就是针对图像计算高并行度,高吞吐量,容忍高延迟而定制的并行处理器。
本文选自“从软件算法生态看GPU发展与局限”,介绍GPU原理、GPU场景等,具体内容如下:
第一章、GPU 简介
1.1、GPU是什么?
1.2、为什么需要GPU等协处理器?
1.3、GPU还能干什么?
1.4、GPU不适合干什么?
1.5、GPU总体市场现状
第二章、GPU 未来面临挑战应用场景解析
2.1 谷歌披露实用的全新人工智能专用协处理器:TPU
2.2 TPU 主要思路:针对人工智能算法需求裁剪计算精度
2.3 从谷歌 TPU 设计思路看人工智能硬件发展趋势
2.4 GPU/FPGA 用于神经网络计算的弱点:片上网络
第三章、GPU 未来较适应场景解析
3.1 VR应用:持续增长的优势领域
3.2 云计算/大数据应用

3.3 GPU,云和游戏服务结合

第一章、GPU简介

GPU其原始设计针对图像计算的特性进行优化,因此也能兼职一些与图像计算特性接近的大规模并行标准浮点数计算任务,如科学计算与数值模拟。但大规模并行计算并非一个笼统的概念,而是一个可以按照计算性能需求6个维度上进行细分的大类别。因此GPU绝非解决大规模并行计算问题的万金油,无法很好的支持与图形计算特性相差较大的并行计算任务。

1.1GPU 是什么?

GPU其他名称有显示核心、视觉处理器、显示芯片。顾名思义,GPU最主要的应用场景就是处理图像显示计算。计算机图像显示流程见,在这个过程中CPU决定了显示内容,而GPU则决定了显示的质量如何。像GPU这类辅助CPU完成特定功能芯片统称“协处理器”,“协”字表明了GPU在计算机体系中处于从属地位。

GPU芯片可根据与CPU的关系分为独立GPU和集成GPU。独立GPU通常图形处理能力更高一些,但也有成本更高,功耗和发热较大等问题。近年集成式GPU流行于移动计算平台如笔记本和智能手机。例如高通的智能手机芯片通常将CPU和一个功能较弱的GPU以及其他协处理器通过SoCSystem on Chip,片上系统)技术组合在一起。集成GPU图形计算性能相对独立GPU较弱但功耗/成本均针对了移动计算平台的需求做了优化,将长期占据移动计算市场。

1.2、为什么需要 GPU 等协处理器?

在计算机系统中,之所以出现GPU等协处理器,归根到底在于没有一种芯片设计方案能够满足所有不同类别计算任务所需求的全部性能指标:
  • 计算精度;
  • 计算并行度;
  • 计算延迟;
  • 计算吞吐量;
  • 并行进程之间的交互复杂度;
  • 计算实时性要求;
鱼和熊掌不可兼得;在设计计算机芯片中,以上六个指标不可能在有限的资源约束下同时满足。的雷达图比较了CPU的设计偏向(蓝线)以及图形计算的要求(红线),越靠近外圈则表示要求高/性能好,如计算延迟低、计算吞吐量大。

我们可以发现CPU设计的一部分偏好,如并行进程交互能力强,低计算延迟是图形计算所不需要的;但图形计算要求的高计算并行度,高计算吞吐量是CPU所不能提供的。将CPU应用在图形处理中会造成一部分性能被浪费,而另一些性能CPU无法满足要求(雷达图上红线和蓝线的显著差异);这提供了GPU这种针对图形技术优化芯片性能指标的协处理器的生存空间。
在广义计算系统体系中,其他类别的协处理器,如DSPFPGABP等协处理器之所以独立存在,均因为其所处理的特定计算任务在计算指标雷达图中与CPU以及其他协处理器差异过大。一个协处理器产业是否有足够的市场空间主要取决于其针对的计算任务在性能雷达图中是否独特(否则会被CPU等“兼职”),以及这种计算任务是否有足够大市场需求。

1.3GPU 还能干什么?

GPU生产厂商针对图形处理的性能要求将资源分配强化两个特定指标:计算并行度和计算吞吐量。除了图形计算以外,还有一些计算任务的性能雷达图落在GPU的性能范围内或相差不甚太远(见),比如数值仿真模拟、金融类计算、搜索引擎、数据挖掘等。

正因看中拓展GPU在特殊计算任务的应用前景,主流的GPU厂商纷纷推出软硬件结合的并行编程解决方案。例如Nvidia推出闭源的CUDA并行计算平台,而AMD推出了基于开放性OpenCL标准的Stream技术。这类技术在软件上提供一个定制的编译器,将计算任务尽可能分解成可独立并行执行的小组件(术语为“线程”);在硬件上对GPU进行小幅度修改,少量提高其在延迟/并行交互等传统弱项的性能。
虽然GPU的并行计算能力与金融数据处理需求存在一定匹配(图4中红线和蓝线相近),但金融核心账本计算中需要远超过一般计算平台的精度。GPU内部搭载的2进制计算单元无法保障账本分毫不差;金融业的核心账本计算业务长期依赖搭载10进制计算单元的IBM Power系列高端处理器。如果改造GPU使其搭载10进制硬件计算单元,则其又无法适应图形计算的需求。这个案例充分说明:并非所有并行计算任务就一定适合GPU计算,而需要根据实际情况区分

1.4GPU 不适合干什么?

GPU属于大规模并行计算芯片的一个子类;但其并不能解决所有的大规模并行计算任务。大规模并行计算芯片可粗略划分为两大组成部分:

1)并行计算单元,数目从数个至数千个不等,完成“线程”计算;

2NoC(Network on Chip,片上通讯网络),负责在计算单元之间传递数据;
针对不同的计算需求场景,大规模并行计算芯片的设计思路大体有两个方向:
1)处理单元优化:包括增减处理器单元数量或改变处理器单元内部的结构等;
2NoC网络优化:更改网络拓扑、网络路由算法、优化网络控制机制等;
这两个方向上的优化需要分享芯片上有限的资源;强化一个方向的性能/增加某个方向的资源分配往往就意味着需要牺牲另一个方向的性能。
多核CPUGPUFPGA是常见的并行计算架构,它们的资源分配倾向示意图见图。

GPU将主要资源分配给了图形常用计算单元,如浮点数的乘法和加法,而采用了最简单的片上网络拓扑:树状NoC网络,在基本计算单元之间传递数据,见
这种片上网络的优缺点分别是:
  • 优点1:消耗的资源最小;
  • 缺点1:通过读写片上存储的方式传递数据,速度较慢;
  • 缺点2:树根结点容易因通讯堵塞成为瓶颈,如中红线和蓝线分别表示A计算节点向BCD传递数据,两个传递过程在根节点和二级共享节点交汇,当片上数据传递频繁时,树状拓扑NoC极易发生堵塞问题。

GPU之所以采用树状拓扑结构,概因其“主业”-图形计算仅有少量情形需要在计算节点之间做复杂数据通信,因此采用树状拓扑以外的方案是纯粹的浪费。但树状拓扑结构限制了相当多类别的大规模并行计算任务在GPU上发挥,换句话说,下列这些并行计算任务并不是GPU扩展的强项:
  • 带有较多分支判断类的并行计算任务,典型任务如人机交互、电脑和环境交互中的逻辑判断计算等;
  • 并行计算中带有较多串行成分,以及反馈算法的并行计算任务,典型例子如控制系统计算任务;
  • 带有网状结构数据流的并行计算。典型案例为FFT(傅里叶分析)计算任务,CUDA中的FFT优化后可以提供相对CPU10倍的提速,但当FFT长度超过某个门限后GPU的提升性能就发生下滑(资料来源:NV官网)。DSP芯片往往针对FFT的算法特性提供定制优化,没有GPU存在的问题,因此手机SoC中往往由DSP而不是GPU处理FFT这种网状大规模并行计算。


下载链接:

2022中国信创产业竞争力研究报告

面向所有人的机器学习科普大全

CPU行业研究:国产CPU行业未来可期(2022)

中流击水:六大国产CPU厂商分析(2022)

从软件算法生态看GPU发展与局限

FPGA实际性能超GPU,在AI加速领域得先机

基于虚拟化环境的多GPU并行通用计算平台研究

2022 OCP全球峰会:操作系统系列(2)

2022 OCP全球峰会:操作系统系列(1)

2022 OCP全球峰会:服务器系列

华为产业链深度系列研究:华为战略及破局关键

华为产业链深度研究:鲲鹏生态助力华为涅槃

2022 OCP全球峰会:服务器系列(1)

2022 OCP全球峰会:服务器系列(2)

2022 OCP全球峰会:服务器系列(3)

2022 OCP全球峰会:服务器系列(4)

2022 OCP全球峰会:服务器系列(5)

2022 OCP全球峰会:服务器系列(6)

信创产业链全梳理(2022)

CPU技术与产业白皮书

2023年半导体策略:但行“芯”路,不问“硅”期

2023年半导体设备:聚焦自主可控和国产化替代


本号资料全部上传至知识星球,更多内容请登录智能计算芯知识(知识星球)星球下载全部资料。



免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言联系删除,谢谢。

电子书<服务器基础知识全解(终极版)>更新完毕。
获取方式:点击“小程序链接”即可查看182页 PPT可编辑版本和PDF阅读版本详情。
服务器基础知识全解PPT(终极版)
服务器基础知识全解PDF(终极版)


温馨提示:
请搜索“AI_Architect”或“扫码”关注公众号实时掌握深度技术分享,点击“阅读原文”获取更多原创技术干货。

智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论
  • 一、引言无人机,作为近年来迅速崛起的新兴技术产物,正以前所未有的速度改变着众多行业的运作模式,从民用领域的航拍、物流,到工业领域的测绘、巡检,再到军事领域的侦察、打击等,无人机的身影无处不在。为了深入了解无人机的现状,本次调研综合了市场数据、行业报告、用户反馈等多方面信息,全面剖析无人机的发展态势。二、市场规模与增长趋势随着技术的不断进步和成本的逐渐降低,无人机市场呈现出爆发式增长。近年来,全球无人机市场规模持续扩大,预计在未来几年内仍将保持较高的增长率。从应用领域来看,消费级无人机市场依然占据
    Jeffreyzhang123 2024-12-27 17:29 82浏览
  • 采购与分销是企业运营中至关重要的环节,直接影响到企业的成本控制、客户满意度和市场竞争力。以下从多个方面介绍如何优化采购与分销:采购环节优化供应商管理供应商评估与选择:建立一套全面、科学的供应商评估体系,除了考虑价格因素,还要综合评估供应商的产品质量、交货期、信誉、研发能力、售后服务等。通过多维度评估,选择那些能够提供优质产品和服务,且与企业战略目标相契合的供应商。建立长期合作关系:与优质供应商建立长期稳定的合作关系,这种合作模式可以带来诸多好处。双方可以在信任的基础上进行深度沟通与协作,共同开展
    Jeffreyzhang123 2024-12-27 17:43 63浏览
  • 在当今竞争激烈的商业世界中,供应链管理已成为企业生存与发展的核心竞争力之一。它就像一条无形的纽带,将供应商、制造商、分销商、零售商直至最终消费者紧密相连,确保产品和服务能够高效、顺畅地流转。今天,就让我们一同深入探索供应链管理的奥秘。供应链管理是什么简单来说,供应链管理是对从原材料采购、生产制造、产品配送直至销售给最终用户这一整个过程中,涉及的物流、信息流和资金流进行计划、协调、控制和优化的管理活动。它不仅仅是对各个环节的简单串联,更是一种通过整合资源、优化流程,实现整体效益最大化的管理理念和方
    Jeffreyzhang123 2024-12-27 17:27 57浏览
  • 引言工程师作为推动科技进步和社会发展的核心力量,在各个领域发挥着关键作用。为深入了解工程师的职场现状,本次调研涵盖了不同行业、不同经验水平的工程师群体,通过问卷调查、访谈等方式,收集了大量一手数据,旨在全面呈现工程师的职场生态。1. 工程师群体基本信息行业分布:调研结果显示,工程师群体广泛分布于多个行业,其中制造业占比最高,达到 90%,其次是信息技术、电子通信、能源等行业。不同行业的工程师在工作内容、技术要求和职业发展路径上存在一定差异。年龄与经验:工程师群体以中青年为主,30 - 45 岁年
    Jeffreyzhang123 2024-12-27 17:39 72浏览
  • 在当今科技飞速发展的时代,工业电子作为现代制造业的中流砥柱,正以前所未有的速度推动着各个行业的变革与进步。从汽车制造到航空航天,从智能家居到工业自动化,工业电子的身影无处不在,为我们的生活和生产带来了巨大的改变。工业电子的崛起与发展工业电子的发展历程可谓是一部波澜壮阔的科技进化史。追溯到上世纪中叶,电子技术开始逐渐应用于工业领域,最初主要是简单的电子控制装置,用于提高生产过程的自动化程度。随着半导体技术、计算机技术和通信技术的不断突破,工业电子迎来了爆发式的增长。集成电路的发明使得电子设备的体积
    Jeffreyzhang123 2024-12-27 15:40 67浏览
  • 在当今这个数字化的时代,电子设备无处不在,从我们手中的智能手机、随身携带的笔记本电脑,到复杂的工业控制系统、先进的医疗设备,它们的正常运行都离不开一个关键的 “幕后英雄”—— 印刷电路板(Printed Circuit Board,简称 PCB)。PCB 作为电子设备中不可或缺的重要部件,默默地承载着电子元件之间的连接与信号传输,是整个电子世界的基石。揭开 PCB 的神秘面纱PCB,简单来说,就是一块由绝缘材料制成的板子,上面通过印刷、蚀刻等工艺形成了导电线路和焊盘,用于固定和连接各种电子元件。
    Jeffreyzhang123 2024-12-27 17:21 53浏览
  • 在科技飞速发展的今天,汽车不再仅仅是一种交通工具,更是一个融合了先进技术的移动智能空间。汽车电子作为汽车产业与电子技术深度融合的产物,正以前所未有的速度推动着汽车行业的变革,为我们带来更加智能、安全、舒适的出行体验。汽车电子的发展历程汽车电子的发展可以追溯到上世纪中叶。早期,汽车电子主要应用于发动机点火系统和简单的电子仪表,功能相对单一。随着半导体技术的不断进步,集成电路被广泛应用于汽车领域,使得汽车电子系统的性能得到了显著提升。从电子燃油喷射系统到防抱死制动系统(ABS),从安全气囊到车载导航
    Jeffreyzhang123 2024-12-27 11:53 80浏览
  • 在当今这个科技飞速发展的时代,物联网(IoT)已经不再是一个陌生的概念,它正以一种前所未有的速度改变着我们的生活和工作方式,像一股无形的力量,将世界紧密地连接在一起,引领我们步入一个全新的智能时代。物联网是什么简单来说,物联网就是通过感知设备、网络传输、数据处理等技术手段,实现物与物、人与物之间的互联互通和智能化管理。想象一下,你的家里所有的电器都能 “听懂” 你的指令,根据你的习惯自动调节;工厂里的设备能够实时监测自身状态,提前预警故障;城市的交通系统可以根据实时路况自动优化信号灯,减少拥堵…
    Jeffreyzhang123 2024-12-27 17:18 53浏览
  • 在科技飞速发展的今天,医疗电子作为一个融合了医学与电子技术的交叉领域,正以前所未有的速度改变着我们的医疗模式和健康生活。它宛如一颗璀璨的明珠,在医疗领域绽放出耀眼的光芒,为人类的健康福祉带来了诸多惊喜与变革。医疗电子的神奇应用医疗电子的应用范围极为广泛,深入到医疗的各个环节。在诊断方面,各种先进的医学成像设备堪称医生的 “火眼金睛”。X 光、CT、MRI 等成像技术,能够清晰地呈现人体内部的结构和病变情况,帮助医生准确地发现疾病。以 CT 为例,它通过对人体进行断层扫描,能够提供比传统 X 光更
    Jeffreyzhang123 2024-12-27 15:46 56浏览
  • 一、前言 回首2024,对于我而言,是充满挑战与收获的一年。在这一年里,我积极参与了论坛的众多活动,不仅拓宽了我的认知边界(有些东西不是你做不到,而是你想不到),还让我在实践中收获了宝贵的经验和。同时,多种多样的论坛活动让我们全方面的接受新东西,连接新知识,多种类型的的活动交织了你我的2024。在这里说一说对过去一年的活动经历,进行一次年终总结,并谈谈我的收获和感受,以及对2025年的展望。二、活动足迹(一)快速体验:机智云Gokit2.0开发板初体验 机智云Gokit2.0开发板的体验活动让大
    无言的朝圣 2024-12-27 14:50 49浏览
  • 起源与基础20 世纪 60 年代:可编程逻辑设备(PLD)的概念出现,一种被称为 “重构能力” 的芯片的可编程性吸引了许多工程师和学者。20 世纪 70 年代:最早的可编程逻辑器件 PLD 诞生,其输出结构是可编程的逻辑宏单元,它的硬件结构设计可由软件完成,设计比纯硬件的数字电路更灵活,但结构简单,只能实现小规模电路。诞生与发展20 世纪 80 年代中期:为弥补 PLD 只能设计小规模电路的缺陷,复杂可编程逻辑器件 CPLD 被推出,它具有更复杂的结构,能够实现较大规模的电路设计。1988 年:
    Jeffreyzhang123 2024-12-27 10:41 66浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦