结合表面等离激元光学纳腔,实现极低照度下纳米晶高亮度光子上转换

MEMS 2023-01-05 00:00

导读

近日,华中科技大学陈学文、唐建伟与哈工大陈冠英教授合作在纳米晶光子上转换领域取得重要突破,他们提出纳米晶内部量子态与外部光学环境协同调控理论,预言并在单颗粒水平上揭示光学纳腔效应在光子上转换中存在增强饱和的现象,演示了横跨7个数量级的上转换增强范围,成功实现了极低照度下高亮度光子上转换,从而展现了上转换纳米晶在生物成像、传感、显示等领域的巨大应用潜力。相关成果以“Bright single-nanocrystal upconversion at sub 0.5 W cm⁻² irradiance via coupling to single nanocavity mode”为题12月22日在线发表于光学领域国际顶尖学术刊物《自然·光子学》(Nature Photonics)上。

研究背景

稀土离子掺杂的纳米晶,可将低能量光子转换成高能量光子发射,在生物成像、传感、显示、信息存储、光伏等领域具有广阔的应用前景。但是,其成功实际应用的关键在于能否在低激发光强下实现高亮度的光子上转换。为提高上转换亮度,在过去的二十年里研究者们投入了巨量的资源,材化学者们对纳米晶内部的材料组分、晶相、表面化学等各个方面作了优化,同时平行地,光学工作者们优化了纳米晶的外部光学环境,例如采用表面等离激元耦合。然而,尽管这两条线的进展都很显著,但纳米晶上转换的绝对亮度始终不如人意。

目前等离激元增强光子上转换的研究中存在3个关键问题亟待解决:

1)从图1a可以看到,报道的上转换增强倍数差异巨大,从0.1倍到10,000倍,横跨5个数量级,缺乏统一的理论框架来合理解释这巨大的跨度。

2)从图1a还可以看到,目前单颗粒对比实验给出的最高增强倍数仅能达到百倍,与系综实验报道的万倍增强相差甚远。这是一个令人担忧的情况,因为单颗粒对比实验由于排除了系综非均一性的影响,因而被认为鲁棒性更高。

3)从图1b可以看到,目前报道的等离激元增强上转换的绝对亮度居然显著低于目前最亮的纳米晶,这不禁让人对等离激元增强效应的真实功效产生了疑虑,毕竟人们追求的终极指标是绝对亮度,而绝非相对增强倍数。


图1 纳米晶光子上转换增强研究的综述:a, 相对增强倍数;b, 绝对亮度。

研究亮点

陈学文教授团队及其合作者基于Yb和Tm (Er)稀土离子共掺杂体系的纳米晶,结合表面等离激元光学纳腔,在单颗粒纳米晶高亮度光子上转换方面取得了重要突破。

首先,他们给出了纳米晶内部量子态与外部光学环境协同调控理论,指出不仅需要考虑通常的激发光的增强和发光效率的改变,而且必须考虑量子效应导致的上转换稀土离子内部的光物理动力学的改变,后者与稀土离子掺杂浓度密切相关,这是光子上转换增强观念上的一个进步。基于该理论,他们预言了在光学纳腔作用下光子上转换将出现与掺杂浓度依赖的增强系数饱和现象。


图2 a, 单颗粒纳米晶与光学纳腔单模场相互作用示意图;b, 纳米晶光子上转换物理过程示意图;c, 单颗粒纳米晶与光学纳腔协同调控实验系统。

在实验研究方面,研究团队构建了一个简洁的实验平台——可调谐的单颗粒纳米晶与光学纳腔单个模式耦合系统,在单颗粒水平上无可争辩地证实了上面的理论预言,实验展示了上转换增强系数依据掺杂浓度和激发设置的不同可在0.005到230,000之间变化——横跨7个数量级。研究团队还进一步实验证实纳米晶内部量子态和外部光学环境协同调控理论在不同的材料体系中成立,具有普遍意义。


图3 在单颗粒水平上无可争辩地证实与掺杂浓度依赖的增强系数饱和现象


图4 创纪录的上转换增强倍数(230,000倍)

最后,研究团队给出了获得超亮纳米晶光子上转换的一般性思路,在此基础上制备了样品和器件,实验演示了在激发功率密度低至0.45 W cm⁻²时仍可检测到每秒560个光子的可观上转换信号,比此前记录提升了两个数量级以上。


图5 激发功率密度低至0.45 W cm⁻²时仍可检测到每秒560个光子的可观上转换信号

总结与展望

研究背景中提到的3个关键问题都在该论文中得到了解决:

1)论文给出了纳米晶内部量子态与外部光学环境协同调控理论,还构建了协同调控实验技术平台,不仅合理解释并理性演示了横跨多个数量级的上转换增强倍数,还将增强范围从5个数量级(0.1倍到10,000倍)大幅扩大到7个数量级(0.005倍到230,000倍)。

2)论文报道的增强倍数均是基于最严格的同一单颗粒对比,鲁棒性极高,将先前单颗粒增强远逊于系综增强的不利状况一举扭转。

3)论文在绝对亮度上取得大幅突破(提升了两个数量级以上),无可争议地证明了等离激元增强路线是行之有效且具有广阔前景的。

论文提出的光子上转换增强思路不依赖于具体的光学纳腔实现方式,并且适用于不同的上转换材料体系,这种光子上转换增强的新方法可以通过自组装方法扩展到大规模系统,从而为纳米晶光子上转换的各种未来应用铺平了道路。

论文信息

华中科技大学物理学院孟勇军博士为该论文的第一作者,华中科技大学物理学院陈学文教授、唐建伟副教授和哈尔滨工业大学化工学院陈冠英教授为该论文的共同通讯作者,华中科技大学为第一完成单位。该成果得到了国家自然科学基金(11874166,92150111,62235006,12004130,51972084,52272270,51672061)、华中科技大学、中央高校基本科研专项资金和城市水资源与水环境国家重点实验室(2020DX10)的资助。

论文链接:
https://www.nature.com/articles/s41566-022-01101-z

延伸阅读:
《AR/VR/MR光学元件技术及市场-2022版》
《光学和射频应用的超构材料-2022版》
《光学和射频领域的超构材料和超构表面-2022版》

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 147浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 127浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 113浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 172浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 122浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 89浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 75浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 211浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 237浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 82浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦