商业化的锂离子电池在使用或储存过程中由于电池内部一系列复杂的化学和物理机制相互作用,常出现某些失效现象,包括容量衰减、内阻增大、倍率性能降低、产气、漏液、短路、变形、热失控、析锂等,严重降低了锂离子电池的使用性能、一致性、可靠性、安全性。
石墨类负极材料失效主要发生于石墨的表面,产生于石墨表面与电解液发生电化学反应,生成固态电解质界面相(SEI)的过程中。本文主要针对磷酸铁锂电池负极表面产生的一种黑斑现象进行成因分析。
1 负极黑斑现象
使用LFP正极及石墨负极按照常规的制造工艺首次充放电后发现电池容量低于正常水平的0.1%~0.5%,电池厚度增加1.85%(图1)。
图1 黑斑和正常电池容量及厚度直方图
在100%SOC状态经过7d 高温[(55±2)℃]存储,重新进行充放电测试发现电池容量出现一定程度衰减且散差变大,电池荷电保持能力存在差异,容量保持率低于正常水平0.4%~0.9%,容量恢复率低于正常水平0.7%~0.89%(表 1)。
表1 黑斑和正常电池容量恢复及容量保持
对电池进行解剖发现,这种卷绕结构的电池负极大面上产生不均匀黑斑,每个极组黑斑程度不同,且收尾端未对正极处黑斑更为明显,已在极片表面析出,导致负极片厚度增加(图2)。
图2 黑斑电池负极片解剖照片
2 负极黑斑区域形貌&成分
对极片收尾端黑斑位置及正常极片进行SEM&EDS成分分析,扫描电镜-能谱是考察材料表面及断面的微区形貌及尺寸、微区常量元素组成的分析工具,EDS为半定量分析工具,采集的是样品表面1~2 μm 深度的信号,仅对元素周期表B以后的元素有检出能力,元素含量>1%时才能被检测出。
测试结果显示:正常负极片成分为100%C元素,黑斑位置除了50%~96%的C元素(主要来源石墨材料)外,还包含4%~44%的O元素(主要来自电解液),1%~3%的F/P元素(主要来自电解质盐LiPF6),个别点位测出2%的Na元素(图3)。
图3 黑斑区域SEM&EDS成分分析
电镜下发现黑斑负极表面已经不再致密,我们看到石墨膨胀,层间结构被破坏[图4(a)(b)];里层石墨存在许多因石墨颗粒分裂产生的裂缝和因粉间粘结失效产生的异常孔洞[图4(c)(d)];观察极片断面,可发现负极片表面的黑斑颗粒是沿着隔膜的方向向外生长[图4(e)(f)],石墨的剥离持续消耗电解液和活性锂,导致容量散布和循环性能下降。随着表层石墨膨胀剥离,脱落的负极粉容易与正极片产生搭接,触发电池自放电。
图4 黑斑区和正常极片SEM照片
3 负极黑斑成因分析
负极碳材料结构复杂,种类繁多,而它们的导电行为因电解液体系的不同而不同。电解液在负极界面发生的化学或电化学反应,对电池的容量特性及充放电特性有着重要的影响,因此负极表面的失效分析应从碳负极材料结构特性、电解液体系的组成、负极和电解液界面反应的匹配程度着手,不仅对电解液和电极材料的选择,而且对界面反应的控制和对提高电池的性能都具有重要的指导作用。
3.1 负极材料结构特性
作为锂离子电池负极的碳材料种类繁多,且随着原料、制作工艺的不同而具有不同的结构特征,因此,不同种类的碳材料作为锂离子电池负极时,其性能差异很大。
从理论上说,碳负极材料的层状结构越好越有利于锂离子的插入和脱出,通常我们使用石墨化度来反映碳材料结构完善程度,研究表明具有较高的石墨化度,同时又存在SP3杂化态碳原子的碳材料可以生成优异的SEI膜和较大的贮锂空间。
不同温度的热处理,可以改变碳材料的微观结构及石墨化度,随着热处理温度的升高,d002逐渐变小,Lc逐渐增大,插锂结构逐渐增多,石墨化度也逐渐增大。
利用XRD分析负极片黑斑区域,d002和石墨化度虽然保持不变但Lc和n大幅减小,说明此区域石墨嵌锂少或者未嵌锂,验证了黑斑区域石墨颗粒层间剥离严重,与SEM和EDX结果一致(表2)。
表2 不同位置XRD数据分析对比
3.2 电解液体系组成
石墨材料之所以能实现在锂离子电池中的应用全靠电解液在石墨表面分解形成的离子可导、电子不导的固体电解质界面(SEI)膜。其化学成分和性质取决于负极材料和电解液的组成和性质,对电池的性能和容量有重要影响,这层保护膜将还原稳定性远低于嵌锂电位的电解液与石墨电极隔离,从而保证在嵌锂电位下电解液不发生还原分解,使得锂离子在石墨材料中可逆嵌脱。
目前,电动汽车锂离子电池电解液中常用的有机溶剂有EC、PC、DMC、DEC、EMC等。有些电解液分解产物可以形成稳定的SEI膜,而有些电解液却会在高于嵌锂的电位下持续发生还原分解,最终导致石墨层结构坍塌。这种界面行为的差异最典型的应该是锂离子电池发展史上众所周知的“碳酸丙烯酯(PC)和碳酸乙烯酯(EC)的差异”。
PC具有较高的介电常数和较低的熔点,因此包括PC在内的电解质在低温下具有更好的性能。然而,PC在嵌锂电位以~0.7V发生持续的还原分解,结合第一性原理计算[Li-PC]+嵌入石墨后的LUMO值偏低,低于石墨的费米能级。当配离子的LUMO值低于宿主的费米能级时,溶剂分子和宿主之间电子能量转移就更容易发生,也就是说PC溶剂分子嵌入石墨后并不能稳定存在而是会在石墨宿主内发生化学反应,无法形成致密的SEI膜,化学分解同时生成CO、CO2、H2等气相副产物,导致石墨剥落和石墨颗粒开裂,最终使得石墨结构坍塌,无法正常嵌脱锂,使得循环性能变差。
而EC,在室温下处于固相,不能单独用于传统锂离子电池,其分子结构仅比PC少一个甲基,也具有较高的介电常数和较好的导电性,却在略高于0.7V电位下发生分解形成一层稳定的SEI膜,从而抑制电解液在更低电位的分解,使得锂离子可在石墨材料中正常地嵌入和脱出,提高电池寿命。
此外,有研究表明锂盐阴离子PF6-是导致PC与EC界面行为差异的最根本原因。当石墨电极电压下降时(发生嵌锂反应,即电池充电过程),由于溶剂化的锂离子溶剂化层体积远大于石墨层层间距,因此在嵌入石墨负极表面以前需要发生去溶剂化过程。EC基体系锂离子脱溶剂化层时优先脱去EC分子,形成含PF6-的溶剂化层,PF6-参与随后的还原分解,形成富含LiF的稳定SEI膜。而PC基体系的锂离子脱溶剂化层时脱去PC分子和PF6-的概率相当,因此参与还原分解的PF6-含量减少,导致形成的分解产物LiF含量低。研究表明,LiF含量低是导致PC基电解液分解产物无法形成致密稳定SEI膜的根本原因。电解液与活性锂消耗于成膜和溶剂共嵌入,石墨颗粒实际嵌入层间的活性锂少,其宏观形貌则表现为黑色斑点。
Li+溶剂化结构的性质和所得的去溶剂化过程是石墨中可变稳定性的根本原因,通过研究PF6-阴离子中P-F的拉曼振动证明了当使用单一碳酸酯溶剂(例如DEC、EMC、EC、VC、FEC、VEC、PC)时,很难以良好的均匀性实现锂电镀;相反,在基于DMC的单一电解液中镀锂是可能的。这意味着某些类型的Li+-DMC 相互作用有利于镀锂。