CMOS图像传感器的3D堆叠技术

传感器技术 2023-01-01 07:00

为了加速影像数据处理, 业界研发了在互补金属氧化物半导体(CMOS)影像传感器中配备嵌入式动态随机存取存储器(DRAM),推出了配备DRAM的三层堆叠式CMOS影像传感器,SONY是最早发布这一产品的厂家,这款型号为IMX400的三层堆叠式感光元件(Exmor RS)是专为智能手机而打造的。


 

SONY的堆叠式CMOS传感器元件


Sony的Xperia XZ Premium和Xperia XZ两款旗舰级智能手机搭载了具有960fps画面更新率的Motion Eye相机模组。


这款三层堆叠的CMOS影像传感器(CIS)被面对背地安装在DRAM上,使得DRAM与影像讯号处理器(ISP)面对面接在一起。


Sony三层堆叠式CMOS影像传感器的芯片横截面


Sony在其较早的19Mp影像传感器中使用双模拟/数位转换器(ADC),为画素资料进行数字化。而今,该公司使用4层ADC的结构提高读取速度,同时也改善了处理能力。DRAM则用于暂时储存高速数据,然后再以传感器介面的最佳速率输出。该设计使其能以1/120秒读取1,930万画素的静态影像,而在影片模式下可达到1,000fps的画面更新率,较以往产品的静态影像与动态影片分别提高了4倍和8倍的速度。Sony可说是再次将手机相机的功能推至极限。

Sony新开发配备DRAM的三层堆叠式CMOS影像传感器


3D堆叠技术


3D 堆叠技术是把不同功能的芯片或结构, 通过堆叠技术和过孔互连等微机械加工技术, 使其在 Z轴方向上形成立体集成和信号连通以及圆片级、芯片级、硅帽封装等封装和可靠性技术为目标的三维立体堆叠加工技术, 用于微系统集成, 是继片上系统( SOC) 、多芯片模块( MCM ) 之后发展起来的系统级封装( SiP/ SoP) 的先进制造新技术。


微电子的模块已经实现 3D 圆片级封装( WLP)的 系统级封 装 ( SiP ) 技术, 例如, CIS RF 模块、M EM S 封装、标准器件封装, 已有量产, 2009 年开始 3D TSV 堆叠时代( 3D TSV Stack Era ) 的到来,模块化芯片、闪存及 DRAM , 通过堆叠以获得增强的内存容量。


3D 堆叠的主要形式和分类


目前有多种基于 3D 堆叠方法, 主要包括: 芯片与芯片的堆叠( D2D) 、芯片与圆片的堆叠( D2W ) 以及圆片与圆片的堆叠( W2W) 。



D2D 堆叠方式是当前系统级封装( SiP) 方式的主要互联方式, 该堆叠方法主要利用引线键合的方式, 实现3D 方向芯片间的互联, 如图( a) 所示。D2D 方式虽然可以实现3D 堆叠, 提高系统集成度, 但由于主要使用引线键合方式互联, 限制了系统集成度进一步提高, 并由于引线会引入寄生效应, 降低了 3D 系统的性能; 


D2W 堆叠方式利用芯片分别与圆片相应功能位置实现3D 堆叠,如图( b) 所示, 该种方式主要利用 flip-chip( 倒装)方式和bump( 置球) 键合方式, 实现芯片与圆片电极的互联, 该方式与 D2D 方式相比, 具有更高的互联密度和性能, 并且与高性能的 flip-chip 键合机配合,可以获得较高的生产效率;


W2W 堆叠方式利用圆片与圆片键合, 实现3D 堆叠, 在圆片键合过程中, 利用 TSV 实现信号的互联, 如图( c) 所示, 该种方式具有互联密度高、成本低并且可同时实现圆片级封装( WLP) 的优点, 可以实现 AD、I/ O、传感器等多功能器件的混合集成。 


对于 D2W 和 W2W 堆叠方式,从生产效率的角度, W 2W 方式效率最高, 但从成品率角度考虑, 由于 D2W 方式可以通过筛选, 实现合格芯片( Know good die, KGD) 之间的堆叠, 因此成品率较高; 而 W2W 方式, 无法通过实现事先筛选,
会严重影响堆叠的成品率。 


对于 W2W 堆叠方式, 必须严格控制芯片及 3D 堆叠工艺的成品率, 否则, 随着堆叠层数的增加, 成品率将大幅下降。对于一个需要 3 层的堆叠工艺来说, 必须将圆片成品率及层叠成品率均控制在 98%以上, 才可能获得 90%以上的 3D 堆叠成品率。


层间互联技术——TSV


从微电子技术的发展趋势看, 基于 TSV 技术的3D 堆叠技术, 将是微电子技术发展的必然趋势, 但也面临许多技术挑战, 如 TSV 技术、超薄片加工技术( 临时键合、减薄等) 、异质键合技术、层间对准技术等等, 其中, TSV 技术最为关键。

穿透硅通孔( TSV) 将在先进的三维集成电路( 3D IC) 设计中提供多层芯片之间的互连功能, 是通过在芯片和芯片之间、晶圆和晶圆之间制作垂直导通, 实现芯片之间互连的最新技术。 与以往的IC 封装键合和使用凸点的叠加技术不同, TSV 能够使芯片在三维方向堆叠的密度最大、外形尺寸最小, 并且大大改善芯片速度和降低功耗的性能。

 采用硅通孔技术( TSVs) 的堆叠器件
 

TSV 与目前应用于多层互连的通孔有所不同,一方面 TSV 通孔的直径通常仅为为 1~100 μm , 深度 10~400 μm, 为集成电路或者其他多功能器件的高密度混合集成提供可能; 另一方面, 它们不仅需要穿透组成叠层电路的各种材料, 还需要穿透很厚的硅衬底, 因此对通孔的刻蚀技术具有较高的要求。目前制造商们正在考虑的多种三维集成方案, 也需要多种尺寸的T SV 与之配合。等离子刻蚀技术已经广泛应用于存储器和 MEM S 生产的深硅刻蚀工艺, 同样也非常适合于制造 TSV。 



利用3D 堆叠技术实现微系统, 是未来发展的必然趋势, 是突破摩尔定律发展的必然选择。其中利用MEMS 技术实现 TSV 互连, 是该技术的核心技术,必须重点解决与突破。




本公众号高薪签约长期专栏作者,欢迎具备优秀写作能力的科技从业或爱好者,联系传感器小编YG18511751369(微信号)

期待下一篇10W+出自您的笔下!

 

免责声明:本文版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。 

  

 

为您发布产品,请点击“阅读原文”

 

传感器技术 制造业的未来是智能化,智能化的基础就是传感器; 互联网的方向是物联网,物联网的基石也是传感器; 关注传感器技术,获得技术资讯、产品应用、市场机会,掌握最黑科技,为中国工业导航。
评论 (0)
  • 四、芯片封测技术及应用场景1、封装技术的发展历程 (1)DIP封装:早期分立元件封装,体积大、引脚少; (2)QFP封装:引脚密度提升,适用于早期集成电路。 (3)BGA封装:高密度互连,散热与信号传输优化; (4)3D封装:通过TSV(硅通孔)实现垂直堆叠,提升集成度(如HBM内存堆叠); (5)Chiplet封装:异质集成,将不同工艺节点的模块组合(如AMD的Zen3+架构)。 (6)SiP封装:集成多种功能芯片(如iPhone的A系列SoC整合CPU、GPU、射频模块)。2、芯片测试 (1
    碧海长空 2025-04-15 11:45 202浏览
  • 三、芯片的制造1、制造核心流程 (1)晶圆制备:以高纯度硅为基底,通过拉晶、切片、抛光制成晶圆。 (2)光刻:光刻、离子注入、薄膜沉积、化学机械抛光。 (3)刻蚀与沉积:使用干法刻蚀(等离子体)精准切割图形,避免侧壁损伤。 (4)掺杂:注入离子形成PN结特性,实现晶体管开关功能。2、材料与工艺创新 (1)新材料应用: 高迁移率材料(FinFET中的应变硅、GaN在射频芯片中的应用); 新型封装技术(3D IC、TSV硅通孔)提升集成度。 (2)工艺创新: 制程从7nm到3nm,设计架构由F
    碧海长空 2025-04-15 11:33 202浏览
  • 展会名称:2025成都国际工业博览会(简称:成都工博会)展会日期:4月23 -25日展会地址:西部国际博览城展位号:15H-E010科士威传动将展示智能制造较新技术及全套解决方案。 2025年4月23-25日,中国西部国际博览城将迎来一场工业领域的年度盛会——2025成都国际工业博览会。这场以“创链新工业,共碳新未来”为主题的展会上,来自全球的600+ 家参展企业将齐聚一堂,共同展示智能制造产业链中的关键产品及解决方案,助力制造业向数字化、网络化、智能化转型。科士威传动将受邀参展。&n
    科士威传动 2025-04-14 17:55 88浏览
  •   无人装备作战协同仿真系统软件:科技的关键支撑   无人装备作战协同仿真系统软件,作为一款综合性仿真平台,主要用于模拟无人机、无人车、无人艇等无人装备在复杂作战环境中的协同作战能力、任务规划、指挥控制以及性能评估。该系统通过搭建虚拟战场环境,支持多种无人装备协同作战仿真,为作战指挥、装备研发、战术训练和作战效能评估,提供科学依据。   应用案例   系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合就可以找到。   核心功能   虚拟战
    华盛恒辉l58ll334744 2025-04-14 17:24 90浏览
  • 在当今汽车电子化和智能化快速发展的时代,车规级电子元器件的质量直接关系到汽车安全性能。三星作为全球领先的电子元器件制造商,其车规电容备受青睐。然而,选择一个靠谱的三星车规电容代理商至关重要。本文以行业领军企业北京贞光科技有限公司为例,深入剖析如何选择优质代理商。选择靠谱代理商的关键标准1. 授权资质与行业地位选择三星车规电容代理商首先要验证其授权资质及行业地位。北京贞光科技作为中国电子元器件行业的领军者,长期走在行业前沿,拥有完备的授权资质。公司专注于市场分销和整体布局,在电子元器件领域建立了卓
    贞光科技 2025-04-14 16:18 148浏览
  • 一、智能语音播报技术演进与市场需求随着人工智能技术的快速发展,TTS(Text-to-Speech)技术在商业场景中的应用呈现爆发式增长。在零售领域,智能收款机的语音播报功能已成为提升服务效率和用户体验的关键模块。WT3000T8作为新一代高性能语音合成芯片,凭借其优异的处理能力和灵活的功能配置,正在为收款机智能化升级提供核心技术支持。二、WT3000T8芯片技术特性解析硬件架构优势采用32位高性能处理器(主频240MHz),支持实时语音合成与多任务处理QFN32封装(4x4mm)实现小型化设计
    广州唯创电子 2025-04-15 08:53 111浏览
  • 一、引言:健康管理数字化浪潮下的血压监测转型在慢性病高发与老龄化加剧的双重压力下,家庭健康监测设备正从“被动测量工具”向“主动健康管家”演进。传统血压计虽能提供基础数值,却无法解决用户的核心痛点:数据如何解读?异常如何干预?风险如何预防?WT2605C芯片方案的诞生,通过“AI对话+云端互联+个性化服务”三重技术突破,重新定义了血压计的价值边界——它不仅是一台测量仪器,更是一个全天候在线的健康管理生态系统。二、传统血压计的局限与用户需求升级1. 功能单一性困境数据孤岛:仅显示收缩压/舒张压数值,
    广州唯创电子 2025-04-16 08:55 0浏览
  • 二、芯片的设计1、芯片设计的基本流程 (1)需求定义: 明确芯片功能(如处理器、存储、通信)、性能指标(速度、功耗、面积)及目标应用场景(消费电子、汽车、工业)。 (2)架构设计: 确定芯片整体框架,包括核心模块(如CPU、GPU、存储单元)的协同方式和数据流路径。 (3)逻辑设计: 通过硬件描述语言(如Verilog、VHDL)将架构转化为电路逻辑,生成RTL(寄存器传输级)代码。 (4)物理设计: 将逻辑代码映射到物理布局,涉及布局布线、时序优化、功耗分析等,需借助EDA工具(如Ca
    碧海长空 2025-04-15 11:30 165浏览
  • 一、智能门锁市场痛点与技术革新随着智能家居的快速发展,电子门锁正从“密码解锁”向“无感交互”进化。然而,传统人体感应技术普遍面临三大挑战:功耗高导致续航短、静态人体检测能力弱、环境适应性差。WTL580微波雷达解决方案,以5.8GHz高精度雷达感知技术为核心,突破行业瓶颈,为智能门锁带来“精准感知-高效触发-超低功耗”的全新交互范式。二、WTL580方案核心技术优势1. 5.8GHz毫米波雷达:精准感知的革命全状态人体检测:支持运动、微动(如呼吸)、静态(坐卧)多模态感知,检测灵敏度达0.1m/
    广州唯创电子 2025-04-15 09:20 92浏览
  • 一、芯片的发展历程总结:1、晶体管的诞生(1)电子管时代 20世纪40年代,电子管体积庞大、功耗高、可靠性差,无法满足计算机小型化需求。(2)晶体管时代 1947年,贝尔实验室的肖克利、巴丁和布拉顿发明点接触晶体管,实现电子信号放大与开关功能,标志着固态电子时代的开端。 1956年,肖克利发明晶体管。(3)硅基晶体管时代 早期晶体管采用锗材料,但硅更耐高温、成本低,成为主流材料。2、集成电路的诞生与发展 1958年,德州仪器工程师基尔比用锗材料制成世界上第一块含多个晶体管的集成电路,同年仙童半导
    碧海长空 2025-04-15 09:30 117浏览
  • 你知道精益管理中的“看板”真正的意思吗?在很多人眼中,它不过是车间墙上的一块卡片、一张单子,甚至只是个用来控制物料的工具。但如果你读过大野耐一的《丰田生产方式》,你就会发现,看板的意义远不止于此。它其实是丰田精益思想的核心之一,是让工厂动起来的“神经系统”。这篇文章,我们就带你一起从这本书出发,重新认识“看板”的深层含义。一、使“看板”和台车结合使用  所谓“看板”就是指纸卡片。“看板”的重要作用之一,就是连接生产现场上道工序和下道工序的信息工具。  “看板”是“准时化”生产的重要手段,它总是要
    优思学院 2025-04-14 15:02 118浏览
  •   高空 SAR 目标智能成像系统软件:多领域应用的前沿利器   高空 SAR(合成孔径雷达)目标智能成像系统软件,专门针对卫星、无人机等高空平台搭载的 SAR传感器数据,融合人工智能与图像处理技术,打造出的高效目标检测、识别及成像系统。此软件借助智能算法,显著提升 SAR图像分辨率、目标特征提取能力以及实时处理效率,为军事侦察、灾害监测、资源勘探等领域,提供关键技术支撑。   应用案例系统软件供应可以来这里,这个首肌开始是幺伍扒,中间是幺幺叁叁,最后一个是泗柒泗泗,按照数字顺序组合
    华盛恒辉l58ll334744 2025-04-14 16:09 151浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦