特斯拉线圈

  • How Does a Tesla Coil Work? A Historical Deep Dive[1]

01 斯拉线圈

  也许看到过特斯拉线圈令人惊讶的放电展示。 它究竟如何工作的呢? 下面听听Kathy给我们讲讲特斯拉线圈每一部分是如何被发明,它的工作原理是什么。

一、感应电流

  故事发生在1826年,一位名叫斯特金的退伍士兵, 研究了缠绕在铁棒周围的线圈,发现通电之后的铁棒具有了磁性,可以吸引金属铁质物件,这就是大众熟悉的电磁铁。

▲ 图1.1 电磁线圈以及电磁铁


  大约六年之后,在1831年,法拉第打算试试看可否利用磁场产生电流。 但他没有那么幸运,当时他没有可用的强磁铁,所以决定利用电磁铁来实验。 他把两个独立的线圈缠绕在一个铁环两边。 发现在第一个线圈接通电压或者断开电压时,第二个线圈会出现电流脉冲。 法拉第使用磁场的概念来解释这个现象,当线圈内的磁场发生变化,便会在线圈中感应出电流。 不过令法拉第感到沮丧的是,他从未能够感受到第二个线圈上的电压。 那个时候人们能够测量电压的手段并不多,只有为数不多的几种办法。

▲ 图1.2 法拉第电磁感应线圈


二、升压变压器

  几年之后,一位来自爱尔兰的牧师,业余科学家,名叫尼古拉斯·卡伦, 他对法拉第的装置进行改进,可以获得更强的电压。 他把两个线圈在同一电棒上进行缠绕,之间是由绝缘层分隔开。 他惊奇的发现当初级线圈断开与电池的连接时,可以在次级线圈上感受到强烈的电击。  当第一个线圈比较薄,也就是线圈匝数比较少,第二个线圈比较厚,对应的的匝数比较多时,可以感受到第二个线圈输出的电压又增强了许多。 卡伦并不知道他发明了一个升压变压器。

▲ 图1.3 卡伦的升压变压器


  当原边连接电池,于是产生了磁场并把铁芯变成了电磁铁。 当电池断开后,铁芯失去了磁性。 因此根据法拉第提出崭新的电磁感应理论,每当电池接入线圈或者断开时,都会在副边产生感应电流。 当副边线圈比原边少的时候,感应的电压小,但产生的电流大。 这也解释了为什么法拉第可以测量到电流,但并没有感受到线圈上的电压刺激。 当副边的线圈增多时,便可以产生更大的电压,人们感受的电压刺激就越强,但输出的电流相对变小。

三、高压脉冲

  卡伦还发明了一个齿轮能够不断地完成电池进入线圈和断开,被称为“重复器”,这样就可以持续产生感应电压。 他说这是至今为止人们所建造的产生高压最好的设备。 卡伦把他的实验结果发送给他的朋友斯特金,斯特金也制作了相同的设备,并对卡伦的方案进行了改进, 后来很多人将这个设备当做折磨人的设备进行出售,从而发了财。

▲ 图1.4 斯特金制作的变压器


  令人不可思议的是,感应线圈居然越来越流行,也被用于医疗方面,许多病症都可以被电击来治疗, 包括粘膜炎,花粉病,哮喘,感冒,流感,头疼,神经痛,风湿病,耳朵疼,牙疼等。

  于是人们开始竞相制作可以输出更大,输出更加稳定持续的电击或者火花的设备。 其中最重要的一个发明就是设计了一种线圈自动完成通断的设备,把原来的齿轮和手柄替代。 在原边线圈通电时,也将铁芯进行磁化,于是吸引弹簧上的衔铁摆动,并将电流断开。此时线圈断电,铁芯失去磁性。释放了衔铁,在弹簧作用下重新连通线路。 这样便可以形成20到40Hz的通断,当时被称为电磁通断器。

▲ 图1.5 自动电火花设备


四、谐振回路

  然后,在电流通断时会产生大量的火花。 到了1853年,一位法国的物理学家,名叫安阿曼德·菲扎,在电磁触点两端增加了莱顿瓶,相当于增加了一个电容器。 莱顿瓶实际上是在玻璃瓶的内外包裹了金属膜,也是最早的电容器。 莱顿瓶的电容容量取决于金属膜的面积和玻璃瓶壁的厚度。 自从加入了莱顿瓶,菲扎消除了电磁触点的火花,但同时也创建了一个革新的设备,可以将来自电池的直流电能转换成交流电。其中的原理是什么呢?

▲ 图1.6 莱顿瓶-高压电容器


  电池连接莱顿瓶,在内外存储了相反的电荷,如果使用线圈进行短接,于是莱顿瓶放电产生电流脉冲。 然后,如果短接电线连接了线圈,电流脉冲通过线圈时,使得线圈内的磁场发生变化。 变化的磁场又会在线圈内感应出新的电流,这是线圈的自感现象。 因此当莱顿瓶在线圈放电时,放电电流会持续,甚至在莱顿瓶中的电荷是放完之后还会持续,这样就会在莱顿瓶中产生相反的充电电荷。 于是莱顿瓶又开始了反方向的放电,如果放电回路中没有电阻损耗,放电电流就会来回反复流动。 如果放电回路中存在电阻损耗,放电电流就会在每次循环中降低,直到系统中电能被完全释放,没有电流流动。 电容与线圈相连被称为谐振回路,现今仍然被应用于振荡电流。

▲ 图1.7 莱顿瓶与线圈组成的谐振环路


  振荡频率依赖于谐振回路中的电容和电感大小。 如果你想改变震荡频率,可以通过改变线圈大小和电容形状。 利用这种方式,在19世纪50年代,人们可以将电池的直流电转换成几兆赫兹的交流脉冲信号,覆盖无线电波频率范围。 又过了若干年,科学家引入了微分方程来描述电路的工作机制。 到了1886年,德国科学家海因里奇·赫兹利用感应线圈第一次观察到了无线电波。 然而赫兹并没有认识到他的发现的重要性,只是认为证明了电磁波理论的正确性。

▲ 图1.8 LC 谐振电压波形


五、特斯拉线圈

  现在我们聊聊尼古拉·特斯拉。 在1889年夏天特斯拉来到巴黎世界博览会,听说了有关电磁波的神奇实验。 于是他自己着手做相应的实验,制作了感应线圈, 但他又进行了新的创新,将原来电磁通断器去掉,使用一台交流发电机产生交流电驱动初级线圈。 这是非常实质的改进,不再依赖于机械装置来产生交变电流,而直接使用交流发电机来提供交变电源。 为此特斯拉还同时发明了交流发电机,三相交流发电机。 这些装置功率很大,使得线圈温度上升,烧坏了线圈的绝缘层,所以他设计了空心线圈。

▲ 图1.9 特斯拉与他发明的三相交流发电机


  后来他发现初级中的了莱顿瓶时好时坏,于是将莱顿瓶移到高压次级线圈, 并且对电容容量能够调整。  通过调整次级电容大小,也可以改变次级的谐振频率,使其为初级交流频率的整数倍数。 借助于这种方式,特斯拉产生了高频高压电流。利用次级电容,产生了可调谐的高频电磁波。 当时的特斯拉对于无线电报和无线广播并不感兴趣,他对无线电能传输照明应用比较痴迷。 为此,他增加了一个谐振回路,这个回路利用单个电线便可以点亮灯泡。 他发现对于霓虹灯、荧光灯来说,甚至不需要任何电线连接,只要靠近高压线圈便能够发光。 后来人们发现在高压线圈顶部增加巨大的金属圆环,便可以产生非常漂亮的放电电弧。 这也是现如今特斯拉线圈最常见到的展示实验。

▲ 图1.10 特斯拉高压点亮氖泡和荧光灯的专利图片


  下面让我们了解一下现代特斯拉线圈的工作机制以及它所能够创造的迷人放电演示。 升压变压器通过次级线圈的增加来获得更高的交流电压。 线圈与电容器组成谐振回路。特斯拉线圈中,交流电压首先通过升压变压器进行电压提升,相应的输出电流减少。这一点与当年卡伦的变压器作用相同。 利用放电间隙对谐振电容进行放电,从而使得谐振回路产生高频电压。 这个高频高压交流电输入到另外一个变压器的原边,产生更高的交流电压,在次级能够产生数百万伏的高压交流电,并对金属圆环体进行充电。 由于顶部圆环上的电压非常高,于是引起空气电离,产生巨大的放电现象。

▲ 图1.11 当代特斯拉线圈的电路原理图


  特斯拉被这种放电现象所征服,他甚至设想建立一个巨大的放电塔,将整个地球都充满电,并点亮大气层。 现实中这并不可行,他甚至游说,J·P 摩根来支持他。 在同一时期,一个意大利的年轻人的想法则比较折中和显示,他叫古列尔莫·马可尼, 他设想实现跨大西洋发送无线电报,后来他使用特斯拉线圈最终获得成功。

▲ 图1.12 Guglielmo Marconi


参考资料

[1]

How Does a Tesla Coil Work? A Historical Deep Dive: https://www.youtube.com/watch?v=IN9jb3fzZd0&t=96s

推荐阅读:
1、我写的东西都在这里了
2、还在用CAM350吗?
硬件工程师炼成之路 硬件工程师的分享、交流、学习的地方。
评论
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 145浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 195浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 206浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 135浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 50浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 181浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 666浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 159浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 80浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 210浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 123浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 324浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 619浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦