小陈爆肝系列二--自举电容的计算

原创 小陈是个工程师 2022-12-21 22:51




自举电路,就是每路的高压侧MOSFET用自举电容供电,整个电路(半桥或者H桥或者三相桥)的MOSFET驱动芯片只用一个电源就可以了,并且这种方法大大减少了整个电路的元器件,简化了电路,降低了成本。本文中,首先介绍了自举电路的拓扑结构,然后介绍了两种驱动电路,最后给出了自举电容的计算公式,并在Multism中进行的仿真验证。



自举电路的基本拓扑结构

01


电压自举,就是利用电路自身产生比输入电压更高的电压。基于电容储能的电压自举电路通常是利用电容对电荷的存储作用来实现的转移,从而实现电压的提升。如图1-1是双倍压电压自举电路的基本原理图。

1-1 电压自举电路示意图

1-1中,假设所有开关都是理想开关,电容均为理想电容,当开关S1S3闭合时,电源VCC给电容C充电使其电压达到VCC,然后开关S1S3断开,S2闭合,直接接到电容C的低压端,此时电容C上仍然保持有前一个相位存储的电荷Q

由于在S2闭合时,电容C上的电荷量不能突变,因此可以得到电荷平衡关系式为:

化简式(1.2)可得到:

式(1.3)表明,在没有直流负载的情况下,通过图1-1所示电路,在理想情况下,输出可达到输入电压的两倍。

常用的两种驱动方式

02


2.1、通过驱动IC驱动

如图2-1所示,是半桥电路中的高压驱动电路:

2-1 半桥驱动电路

2-1中,自举电路给一只电容器充电,电容器上的电压基于高端输出晶体管源极电压上下浮动。VCC通过自举二极管D对自举电容C2充电使其接近VCC电压。当Q2关断时,VS端的电压就会升高,由于电容两端的电压不能突变,因此VB端的电平接近VSVCC两端电压之后,而VBVS之间的电压还是接近VCC电压。当Q2开通时,C2作为一个浮动的电压源驱动Q2;而C2Q2开通期间损失的电荷在下一个周期又会得到补充,这种自举供电方式就是利用VS端的电平在高低电平之间不停地摆动来实现的。

其中驱动IC的内部结构图一般如图2-2所示:

2-2 驱动IC内部原理结构图

2-2C的引脚VBVS为高压供电引脚,HO为高压端驱动输出引脚,VCCCOM为底压端供电;LO为底压端驱动输出引脚,VSS为数字电路供电引脚。此半桥电路的上下桥臂是交替导通的,每当下桥臂开通,上桥臂关断时,VS脚的电位为下桥臂功率管Q2的饱和导通压降,基本上接近地电位。

2.2、通过分立元件驱动

使用分立元件搭建MOS驱动电路如图2-3所示:

2-3 分立元件MOS驱动电路

如图2-3所示,这是用三极管、二极管、电阻、电容分立元件搭建的MOS驱动电路。分析情况如下:

VH为高电平,Q4就会导通是的Q1的基极为低电平,同时使得Q1导通,VCC-10V电压通过二极管D1、三极管Q1、二极管D2、电阻R1驱动MOSQ2G极;

VH为低电平,Q4就不会导通,所以Q1的基极没有电流流过也处于截止状态,所以VCC-10V电压不会通过三极管Q1,那么没有电压驱动MOSQ2G极,由于MOSQ2内部寄生电容和电容C2的存在,G极处存在累计电荷,要通过三极管Q3和电阻R5释放掉;

VL为低电平,Q7基极有电流流过,所以Q5的集电极和发射极导通,导致Q5基极也流过电流,所以VCC-10V电压通过三极管Q5、二极管D3、电阻R7MOS管的G极进行驱动;

VL为高电平,Q7基极无电流流过,所以三极管Q7不会导通,那么导致Q5的发射极和基极处于等电位,Q5的基极也无电流流过,Q5也处于截止状态,同理三极管Q8和电阻R12组成放电电路对G极电荷进行放电。

其中自举电容作用如下:

这里面有个元件可能刚上手分析的时候,弄不懂作用,是哪个呢?是电容C1。由于电容上的电压不能突变,这里利用电容这个特性来更好的驱动MOS管的G极,这里你肯定有所疑问,那么没有这个电容就不能驱动吗?答案:不能

在分析电容C1的作用时,首先需要明白,MOS管导通的条件是:

G极对地电压还是GS之间的电压差

由于MOS驱动是G极电压和S极电压的电位差,所以当MOS管导通时,VAAA电压直接加到MOS管的S极,(这里假设VAAA电压为12VG极对地驱动电压为10V)所以MOS管的GS电压差为:10V-12V=-2V由于GS之间为负电压,对于N沟道的MOS管,会导致DS之间处于截止状态,所以需要一个电压来抬高G极之间的电压,当然有种方法是直接用高电压电源直接驱动G,但是通过MOS管的G极耐压都是非常有限的,那么这个时候电容的作用就体现出来了,当MOS管导通会使得S极电压为VAAA,由于电容的一端与MOSS极连接,所以这一端电容电压瞬间为VAAA,由于电容上电压不能突变的特性,使得电容另一端电压也增加了VAAA,所以电容另一端的电压约等于VAAA+VCC-10V,如图2-4所示,这里用了二极管D1来隔离电容C1上电压和VCC-10V,这样的做法使得MOS管导通后,G极驱动电压克服了S极电压抬高的原因

2-4 驱动电路中自举电容电压的变化

自举电容的选择与电路仿真

03


3.1、自举电容的选择

IGBTPOWER MOSFET 具有相似的门极特性。开通时,需要在极短的时间内向门极提高足够的栅极电荷,在自举电容的充电路径上,分布电感影响了充电的速率。下桥臂功率管的最窄导通时间应保证自举电容有足够的电荷,以满足栅极所需要的电荷量再加上功率器件稳态导通时漏电流所失去的电荷量。因此,从最窄导通时间为最小值考虑,自举电容应该足够小。综上所述,在选择自举电容大小时应考虑,既不能太大影响窄脉冲性能,也不能太小影响宽脉冲的驱动要求,应该从功率器件的功率频率、开关速度、门极特性等方面进行选择,估算后调试而定。

假设上下桥臂MOSFETQ1Q2,在Q1关闭,Q2导通时,VCC通过二极管D对自举电容C进行充电,为了保证对Q1的完全导通,就必须要保证自举电容C上的电压跌落满足:

式(1.4)参数说明:

VCC:驱动电源

VF:二极管正向导通电压

VGS(min):为保证MOSFET饱和导通的最小栅源极电压

VDS(on):为下管Q2饱和导通时流过的电流在导通电阻上的最大压降

而引起自举电容上电压降低的因素主要包括:

1、上管Q1开通所需要的电荷QC

2、上管Q1栅源极的漏电流IIK_GS

3、高压驱动芯片内部悬浮电路所需要的静态电流IQBS

4、芯片内部悬浮端电路在承受高压时对地的漏电流ILK

5、二极管D在承受反向高压时的漏电流ILK_DIODE

6、自举电容的漏电流ILK_CAP

7、上管Q1的开通时间THON

于是可以得到总的电荷数:

式(1.5)中参数太多,实际应用中电路的各个参数也不是标准的,所以可以根据实际经验扩大栅极电荷:

式(1.6)中10表示扩大的裕量倍数。

同时由式(1.6)和式(1.4)可以得到自举电容的最小值为:

3.2、自举电容的选择

搭建仿真电路如图3-1所示:

3-1 MOS驱动电路

3-1中自举电容是C1

由于在Multisim中不知道IRF840的栅极总电荷量参数,所以可以适当调整参数然后测自举电容的电荷量变化即可知道所需电荷量,因此可以设置自举电容为100NF,其电容两端电压波形如图3-2所示:

3-2 自举电容电压变化波形

3-2中可得自举电容电压变化量为V=7.479V,所以MOSIRF840需求的电荷量为:

所以如果要使得自举电容上电压变化量为:VBS(min)=0.1V,其所需要的电容量至少为:

将算的值代入,可得自举电容两端电压波形如图3-3所示:

3-3 自举电容两端电压波形

由图3-3可知,电容两端电压最大值和最低值相差为119.486mV,与实际设置值相差不大,所以也验证了3.1中电容选择的正确性。

转发朋友圈并获得5个赞,即可联系博主“仿真电路”!


往期推荐

交互式BOM制作

2022-11-18

设计共射放大电路—晶体管频率特性不扩展的原因

2022-11-21

这几天的工作量

2022-12-01

设计共射放大电路—提高放大倍数

2022-12-02


--The End--


作者:xiaoxiaodawei

来源:小陈是个工程师


版权归原作者所有,如有侵权,请联系删除


小陈是个工程师 专注于永磁同步电机、嵌入式系统、物联网、开关电源等产品设计,旨在理论与实践结合。
评论
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 54浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 88浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 71浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 59浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 155浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦