除了调匹配,射频人还要掌握系统知识

射频美学 2022-12-19 07:00
关注 ▲射频美学 一起学习成长

这是射频美学的第1104期分享。
来源 | 转载;
微圈 | 进微信群,加微信: RFtogether521
备注昵称+地域+产品及岗位方向(如大魔王+上海+芯片射频工程师);
宗旨 | 看到的未必是你的,掌握底层逻辑才是。

5G射频前端模组的前世与今生中,我们讨论了射频前端模组化这一趋势。在与射频工程师们讨论这一话题的时候,有些射频工程师问到:既然芯片都全集成了,那我们射频人是不是要失业了?


我觉得答案肯定是:不会。随着无线通信的发展,射频会越来越复杂,需要射频人掌握的知识范围会越来越广,射频人会越来越紧俏。


只不过,系统越来越复杂、集成度越来越高之后,对射频人的能力也提出了更高的要求。射频人除了对射频匹配这项基本功熟悉之外,要把复杂的射频系统玩的转,还必须具备足够强的系统知识


为此,我们借5G手机中的射频系统构成为例,抛砖引玉,与大家讨论射频人日常工作中可能遇到的系统类知识。

  手机射频系统演进  

 
随着1973年第一部手机被发明,开启了人类的移动通信时代。在过去50年时间里,移动通信以大约每10年为一个周期快速演进,从1G到5G,手机成为了连接万物的智能中枢。

图:移动通信的演进之路


移动终端演进的革命性突破就是无线通信能力。从3G至5G的演进过程中:

  • 主要通信频段范围不断展宽,由最高频段的2GHz,已扩展至5.0GHz,在部分毫米波终端中,已经扩展至40GHz;
  • 信号带宽不断增加,单载波信号带宽由3G时代的3.84MHz,扩展至100MHz,信号带宽增加近30倍;
  • 载波聚合、多天线方式进一步提升通信能力;
图:从3G到5G的通信能力演进

无线通信能力的提升要借助射频系统的演进来实现。伴随着通信能力的提升,射频前端方案也变的越来越复杂。下图为3G、4G及5G系统方案的简要框图[1][2]。需要说明的是,为了呈现简洁,以下方案已经做了非常大程度的简化。但依然可以看到,当前5G方案非常复杂。

图:射频方案的演进

   5G射频前端方案架构   

 
上一节提到的5G射频前端方案已经比较复杂,但在实际应用中,伴随着不同项目间细节需求的差异,实现方式的不同,方案只会更加复杂,常常让人无从下手。下图为较为典型的5G系统方案图示。

图:典型5G射频系统方案

此方案只是较为简单的标准系统框图,并且做了大量简化。可以看到,即使这样,大量的电路模块还是让系统理解起来产生了困难。为了理解以上系统方案,我们将系统分为如下几个层次讨论:
  • 层1:天线层
  • 层2:天线合路层
  • 层3:天线切换层
  • 层4:频段开关层
  • 层5:子路径实现层

层1:天线层

之所以把天线作为第一层来理解,原因有两个,分别是:
  • 在手机终端中,天线设计往往是受限的,与手机外型设计相关性强
  • 手机通信能力的定义,如频段、MIMO数目、CA、EN-DC、多卡共存及通信系统共存等,与天线设计直接相关
5G手机中,一般根据天线的频率特性和系统需求,将天线以LB、MHB及UHB进行分组。各天线的需求和特性如下:
图:天线的分组设计

以NSA(n41/77/79与LMH频段做EN-DC)、LTE 4x4 MIMO、NR 4x4 MIMO为约束下,可设计天线如下:
图:完整的天线设计需求

可以看到,以上设计中合计需要14根天线,这个天线数目在手机中是很难实现的。这还不包含Wi-Fi,GPS等天线。于是,就需要用到“天线合路器”,将可以合路的天线合路起来

层2:天线合路层


如果每个天线分拆设计,可以得到最为简洁、互不干扰的天线方案。但手机终端中寸土寸金,无法放置这么多天线。并且天线数目增多之后,每个天线得到的净空变小,天线性能也会变差。于是就需要将可以合并的天线进行合并。

天线的合并主要有两个原则:
  • 合并的频率在天线可覆盖的范围内
  • 合并带来的隔离度满足系统需求(EN-DC、CA等)
  • 整体的合路损耗满足系统要求

如《5G移动终端天线设计》所述,典型的天线合并设计如下图所示[3]。
图:经过合并之后的天线分组

天线合并主要通过Diplexer来实现。Diplexer中文名一般翻译为天线共用器或者双讯器,是一种将不同频率信号合成后接入天线的装置。在实现上,一般采用LTCC工艺通过设计低通与高通两个滤波器来实现。下图为典型的用于L/MHB与UHB合路的Diplexer框图、LTCC Diplexer照片,以及频率响应曲线。

图:Diplexer的图标、LTCC Diplexer产品照片,以及频率响应

在实际应用中,除了Diplexer之外,还有Triplexer(三合一),和Diplexer的功能类似,可以合成三路。

Diplexer和Triplexer在相近频带之间的隔离度和带外抑制较差,所以一般只用于频率间隔较大的频段,比如这四种最常用的频率范围:617~960MHz,1710~2200MHz,2300~2690MHz,3300~5000MHz,基本都可以任意组合进行合路。

但是有一点要注意:2200MHz(B66 RX)和2300MHz(2300MHz是B40 TRX频点,2305MHz是B30 TX频点,一般北美市场中高端机型有B66+B30 CA需求)由于频率间隔只有100MHz,普通的LTCC Diplexer或者Triplexer带外抑制性能不是太优,一般都用LTCC+SAW(或者BAW)混合工艺实现。

还有一点,很多频带间隔更小,比如Wi-Fi 5G 和n79合路,或者Wi-Fi 2.4G和B40(或者B41)合路,这样根本无法用一般LTCC工艺实现,所以另一种形态的器件也诞生了,Extractor (抽取器)。Extractor的功能和Diplexer或者Triplexer一样的,但是每一路都是用SAW或者BAW工艺实现的,这样以保证每一路都有更好的隔离度和带外抑制性能,当然,这样的工艺也会导致Extractor的成本更高,所以一般都是用于中高端设备。

天线合路完成之后,就可以结合手机外观进行天线的排布放置。下图为典型的天线放置图例。

图:典型的手机天线放置图例

层3:天线切换层


经过层2的天线合并之后,天线基本上可以固化下来了。但固化下来的天线并不是一成不变的,一些功能需要多天线之间有相互切换的特性。这些功能主要有:
  • 智能天线切换
  • SRS天线轮发
  • 天线的临时占用

智能天线是指发射天线可以进行主/副天线的切换,当一根天线信号不好时,手机信号就可以切换到另外一根天线进行发射。手机因为握持、放置的原因,天线很容易受到影响,智能天线功能可以大大保证发射信号的可靠性。在一些平台中,智能天线切换的功能被称为TAS(Transmit Antenna Selection,发射天线选择)或者ASDiV(Antenna Switch to Diversity)。

图:人手持握状态下对手机下天线的遮挡

SRS是Sounding Reference Signal的缩写,中文名为“探测参考信号”。SRS是利用TDD系统中发射与接收同频互易性,靠发射上行探测信号,来探测中最优的接收路径与接收信道,完成接收性能的优化。与TAS功能一样,SRS也需要用到发射信号在天线间的切换,不同的是,TAS 功能生效后,天线会较长时间驻留在当前天线上,而SRS 是根据协议需求所做的轮发侦听动作,所以在平台应用中,SRS的优先级一般高于TAS。

除了TAS、SRS等天线切换外,还有部分功能会临时占用天线。比如,双卡双待方案中两张SIM卡对部分天线的切换使用;或者SUL(Supplementary Uplink,辅助上行)中辅助上行频段借助部分天线完成上行性能的补充。这些都需要用到天线切换的功能。
以上这些功能都需要信号在不同天线间切换。

实现天线所连接信号切换的一般是多刀多掷开关,最常见的是DPDT(双刀双掷)开关。DPDT常见的符号表示及其在系统中的位置如下图所示。

图:DPDT的两种状态,及在系统中的位置示意

利用多个DPDT,或者NPNT开关,就可以完成天线切换网络,使射频信号在多个天线间切换。下图为天线切换网络示意图。下图可完成射频信号在四天线之间的SRS轮发功能。

图:利用DPDT实现4天线SRS轮发功能

层4:频段开关层


进入5G之后,手机支持的频段数目急剧增加,根据Mobile Expert统计,进入2019年之后,高端手机支持频段数目将达到30个以上[4]。

图:手机支持上行频段数目(Mobile Expert, 2022)

如此多的射频频段无法直接连接进入天线,也无法进入天线切换网络进行切换。这个时候就需要将这些射频通路先进行一次合路,再接入到天线选择开关、天线合路器、或者直连天线中。

通路合路的功能一般通过ASM(Antenna Switch Module,天线开关模组)来实现。在功能上,ASM一般为单刀多掷开关,具体的掷数和分组根据系统方案确定。在连接上,单刀多掷开关的多端口侧连接各频段的发射及接收通路,另一端口端连接后续的天线侧。

图:频段选择开关及不同的合路方案

层5:子路径实现层


到了这一层,5G手机射频系统才拆解到了我们教科书上所学到的射频前端子模块:PA、LNA、滤波器及开关。子路径实现层利用这些子模块,将每个频段的射频通路搭建起来。

在通路实现上,根据双工方式的不同,可以分为FDD(Frequency Division Duplexing,频分双工系统)结构和TDD(Time Division Duplexing,时分双工系统)结构。在5G协议中,以上两种双工方式均有定义,并且在不同频段上做了区分。FDD与TDD系统在实现上的结构如下图所示。

图:FDD与TDD系统的构成

另外需要说明的是,由于滤波器带宽较窄带,一般一个频段就需要用到一个滤波器或双工器。而PA和LNA作为有源电路,可以覆盖较宽的频率范围。所以在实际应用中,会将相近频段的PA用一个宽带PA来实现,再用开关分开,接到不同的滤波器或者双工器上,达到节省PA和LNA通路的目的。以中频段Mid Band中的Band1/2/3/34/39频段为例,具体射频通路实现如下图所示。

图:中频段射频通路实现方式示意

在子路径实现上,主要有“分立方案”和“模组方案”两种形式。

分立方案是指PA、滤波器、LNA等各采用不同的芯片进行实现,再在手机板上组合成完整方案。

模组方案指的是芯片厂商利用集成化设计整合能力,将PA、LNA、滤波器及开关等子模块采用SiP(System in Package,系统化封装)的形式整合在一起,达到节省布板面积,优化射频性能的目的[5]。

图:分立方案(a)与模组方案(b)实现的射频前端系统

其他考虑


基于以上解构,可以将5G射频系统分解如下模块来理解。

图:典型5G射频系统方案

需要说明的是,以上只是较为标准的系统考虑方式,在实际项目中,还会遇到多频段CA、EN-DC的考量,Wi-Fi、GPS、蓝牙及UWB等共天线的需求,以及要综合考虑的系统干扰等问题,实际系统会比以上示例系统复杂很多。

    5G射频前端方案的实现    


通过以上结构,可以看到不同层的模块有着不同的功能与作用。在具体实现上,一般天线层、天线合路层及天线切换层由手机终端厂商来实现;频段开关层、子路径实现层由芯片厂商实现。不过近年来由于射频前端方案集成度越来越高,一些高集成模组中开始集成天线切换开关,方便系统应用时做开关切换需求使用。

图:射频前端方案的实现

过去十年,射频前端不断演进,不管是和天线密切相关的层1至层3,还是与具体通路实现相关的层4与层5,都发生了巨大的变化。

在芯片实现侧,不仅有PA、滤波器等各个子电路的性能演进,还出现了各个子模块多种组合带来的方案变化。为了帮助大家了解射频前端发生的变化,把握最新的演进趋势,慧智微将层4至层5中的芯片方案、具体实现做了梳理,详情可参考以下材料:

  1. 有关射频前端方案演进
    《从4G到5G,射频前端方案10年之路》
  2. 有关模组化方案的趋势
    《5G射频前端模组的前世今生》
  3. 有关PA技术的演进
    《5G射频PA的架构》
    《高效率PA设计:从Class A到Class J》
    《5G射频PA的Load-line与Load-pull》
  4. 有关滤波器技术
    《5G射频前端模组中的滤波器》

欢迎系统平台厂商、手机终端厂商射频工程师一起,分享层1~层3的技术及演进。

  总  结  

 

除了射频前端芯片侧一直有各种各样技术频繁更新,随着5G应用的增多,设计一部5G手机还需要我们射频工程师从需求收集、方案评估、设计实现、调试及debug、到量产等每个环节都要深度参与,每个环节都在考验着我们射频人对射频系统性知识的掌握是否扎实,对射频器件及指标理解是否透彻和射频技术经验是否丰富。

3G手机开发:总共频段数是个位数,口算即可完成链路预算,主要工作是PCB设计及调试匹配;
4G手机开发:单个项目一般十几个频段,较复杂应用场景是DLCA和MIMO,链路预算简单,主要工作是PCB设计及调试匹配和优化MIPI参数;
5G手机开发:单个项目二十个频段以上,需支持EN-DC、CA和UL MIMO等场景,链路预算复杂且工作场景繁杂。主要工作是:需求理解、RFFE器件理解、系统框图梳理,链路预算、PCB设计(要考虑很多因素)、单频段性能调试,共存频段性能测试及调试,debug时间长难度大等,整个工作难度及工作量都呈指数级增加。

正如5G的愿景所期待,万物互联的智能世界正在到来。而万物互联的智能世界一定是基于无线连接的,移动通信技术由2G演进到5G,再到未来的毫米波通信、卫星通信,射频技术不断在发生变革,无线射频技术是移动终端的核心关键技术。

在这个演进过程中,射频工程师的重要性毫无疑问会越来越突显期待和大家一起,解构射频演进中的系统知识。

本文撰写过程中,得到慧智微应用团队大量专业的讨论与分析支持,在此表示感谢!

您觉得射频工程师还必须要掌握什么技能,欢迎留言讨论。对于精彩留言,我们将送上3套《2023慧智微射频百科日历》。


[1]. 从4G到5G,射频前端方案演进十年之路, 慧智微,2021

[2].RF Implementation of Multi-mode Multi-band 5G UE, vivo,  2018

[3].5G移动终端天线设计,林辉等,中国工信出版社,2021,

[4].RF Front Ends for Mobile Devices, Mobile Expert, 2022

[5].5G射频前端模组的前世今生,慧智微,2021


——END——




声明:  欢迎转发本号原创内容,转载和摘编需经本号授权并标注原作者和信息来源为射频美学。  本公众号目前所载内容为本公众号原创、网络转载、其他公众号转载、累积文章等,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。


更多好文请关注公众号
↓↓




射频美学 中国射频产业入口,从沙子到产品的整个过程。 1、专注射频生态美学,包括但不限于芯片、通信、终端等; 2、射频行业、科技产品、新技术、个人成长等相关信息; 3、射频培训等。 射频小助理---射频心理咨询师。
评论
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 74浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 95浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 172浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 111浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 122浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 79浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 66浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 209浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 127浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 145浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦