见证历史!人类或首次实现,可控核聚变「重大科学突破」

传感器技术 2022-12-14 07:00

 

【导读】美国LLNL实验室首次实现核聚变反应的净能量增益,「人造太阳」或将成真了。

爆炸性消息!史上首次,人类实现了核聚变反应的净能量增益。

净功率增益,即产生的聚变功率与用于加热等离子体的功率之比率。

美国劳伦斯利弗莫尔国家实验室(LLNL),从一个实验性核聚变反应堆中,让核聚变反应产生的能量多于了这一过程中消耗的能量。

这就意味着,人类朝人造太阳的目标,又近了一步。

而化石燃料和传统核能,或将退出历史的舞台!

核聚变反应净能量增益,意味着什么

「核聚变」究竟是什么呢?

简单地说,就是两个轻原子核结合成一个较重的原子核,并释放出巨大能量的过程。

我们都知道,万物生长靠太阳,太阳是地球上一切生命的源泉,那太阳的能量来自于哪里呢?

就是核聚变。

在这个热核反应中,两个氢原子碰撞并聚合成氦原子,氦的质量比原来的氢原子略小。

因此,根据爱因斯坦标志性的E=mc²质能方程,这个质量差会转化为能量爆发出来。

在太阳的核心,每秒都在发生6.2亿吨氢的核聚变

这种能量,使我们人类得以生存。

理论上,只要有几克氘(重氢)和氚(超重氢)的混合反应物,就有可能产生一太(万亿)焦耳的能量,这大约是发达国家的一个人60年内所需的能量。

既然核聚变能产生如此大的能量,那我们人类能不能自己DIY这个过程,造出个「人造太阳」?

没错,科学家们早就开始这么想了。

自从人类开启了和平利用核能的研究,如何在可控的条件下利用核聚变反应产生的能量,一直是人类的终极目标(而目前的核电站,原理是核裂变反应)。

但是,利用核聚变最大的难题之一是,核聚变过程本身也会消耗巨大的能量,该如何让核聚变反应释放出的能量大于输入的能量,而且让这个过程可持续呢?

从上世纪50年代以来,无数的物理学家就一直希望从核聚变反应中产生比消耗更多的能量。

如果攻克了这个最大的难题,人类将有可能史上首次获取海量无碳清洁能源,彻底改变未来的能源路线图。

也就是说,到了那时,就不再有煤和石油燃烧产生的温室气体,不再有危险、长效的放射性废物——人类将得到真正意义上的「清洁能源」!

而现在看起来,这个难题的第一步已经被解决了。

据英国《金融时报》报道,美国劳伦斯利弗莫尔国家实验室(LLNL)从一个实验性核聚变反应堆中实现了「净能量增益」,让核聚变反应产生的能量多于这一过程中消耗的能量。

据消息人士透露,这次反应产生的能量是消耗能量的120%,至少有两名研究人员证实了这一消息。

一位资深核聚变科学家对《华盛顿邮报》表示:「对我们大多数人来说,这只是一个时间问题。」

此次核聚变反应产生了大约2.5兆焦耳的能量,大约是激光器中2.1兆焦耳能量的120%,目前具体数据仍在进一步分析中。

美国能源部和LLNL发言人均表示,目前无法评论《金融时报》的报道,不过美国能源部长Jennifer Granholm表示,将在今天晚些时候宣布一项「重大科学突破」。

核聚变专家亚瑟·特瑞尔(Arthur Turrell)博士表示,「如果这个结果得到最终证实,我们将见证一个历史性的时刻。」

四次复现全部失败,人类科技被智子锁死?

其实,之前的科学家们,就曾见证过这一奇迹。

2021年8月,LLNL曾宣布了一项重大突破:破纪录地产生了超过10万亿瓦的高能聚变能量——虽然时长只有一秒不到。

装置将最初的光子脉冲放大并分成192道紫外线激光束后,在不到40亿分之一秒的时间内以大约1.9兆焦耳的能量击中目标(装着冷冻的氘和氚),创造出只有在恒星和热核弹中才能见到的温度和压力。

面对如此强大的脉冲能量,原子核会因核聚变释放出一连串的粒子,并由此产生更多的聚变和更多的粒子,从而形成持续的聚变反应。

根据定义,当聚变反应产生的能量超过其消耗的能量时,就能成功「点火」。

而在8月的试验中,通过核聚变反应产生的能量,已经占到了输入能量的70%,可以说非常接近点火了。

然而,在接下来进行的4次试验中,都未能复现当时的结果。

其中效果最好的一次,也只达到了8月份实验所产生能量的50%。

对此,研究人员分析认为,由于目前正处于聚变「点火」的临界点附近,所以不同实验间微小、偶然的差异都会对结果造成巨大影响。

从重复实验的失败中不难看出,研究人员在很长一段时间内,仍然无法精准理解、操纵和预测这类高能实验。

甚至知友「氯甲烷」调侃称:「我觉得人类科技可能真的被智子锁死了」。

复刻核聚变为何如此之难?

为什么人类想要复刻核聚变,会这么难呢?

这就要从核聚变反应的条件说起。

核聚变反应发生在一种叫作等离子体的物质状态中。

等离子体是一种由正离子和自由移动的电子组成的高温带电气体,具有不同于固体、液体和气体的独特性质。

从左至右:固体,液体,气体,等离子体

为了实现聚变,原子核需要在超过1000万摄氏度的极高温度下相互碰撞,以使它们能够克服相互间的电排斥力。

一旦原子核克服了这种排斥力,并进入彼此非常接近的范围,它们之间的核力吸引力将超过电排斥力,从而使它们能够实现聚变。

要做到这一点,众多原子核必须被约束在一个小空间内,以增加碰撞的机会。

在太阳中,存在巨大的引力,而这种引力所产生的极端压力,正为核聚变的发生创造了条件。

在太阳内部,氢原子被加热到等离子体状态,电子不再围绕质子旋转,然后释放的原子核聚变形成氦原子和中子,释放出巨大能量

然而,太阳中有着能够诱发核聚变的巨大引力,我们人类却没有这样的自然条件。

在地球上,要想使氘和氚发生聚变,就需要超过1亿摄氏度的温度和强大的压力,还需要充分的约束,才能使等离子体和聚变反应保持足够长的时间。

现在,我们人类的实验中已经非常接近核聚变反应堆所需的条件,但仍需改进约束性能和等离子体的稳定性。

来自50多个国家的科学家们,在不断试验新材料,设计新技术。

不过,就像我们在上文所看到的,许多实验已实现聚变,但并未实现净功率增益。

而这次突破,是否意味着我们就要用上纯粹的清洁能源了呢?其实并没有。

首先,即使单纯从数据上看,120%的能量净增比例仍然是远远不够的。据科学家估计,如果要将核聚变技术落地实用,能量输出必须至少比进入的激光器的能量高出几倍才有可能。

而且,这次实验中的NIF的激光器效率极低,也就是说,实验中供给激光器的能量中,只有很小一部分实际进入了激光束中,实际参与了激发核聚变的反应中,大部分能量都被浪费掉了。

按照这种转换效率,即使未来的激光器(比如固态激光器)能够进一步提升转换效率,但距离100%的核聚变应用,仍然是很遥远的事情。

但是至少,我们实现了从0到1的一步。

我国新一代「人造太阳」再次取得进展

建人造太阳的,不止是美国的科学家。

早在20世纪50年代,我国也开始了可控核聚变的研究。

与LLNL采用的「惯性约束聚变」方法不同,迄今为止大多数核聚变研究都采用名为「托卡马克」的圆环形反应堆。

它的原理是:在反应堆内,将氢气加热到足够高的温度,让电子从氢原子核中剥离,形成等离子体(带正电的核和带负电的电子云)。磁场将等离子体困在圆环形状的装置内,将原子核融合在一起,以中子的形式释放出能量向外飞去。

2020年12月4日,由中核集团核工业西南物理研究院自主设计、建造的新一代「人造太阳」建成并实现了首次放电。

2022年10月,相关研究再次取得重大进展——HL-2M等离子体电流突破100万安培(1兆安)。

这不仅创造了我国可控核聚变装置运行新纪录,也标志着我国核聚变研发距离聚变点火迈进了重要一步。

HL-2M是我国目前规模最大、参数最高的托卡马克装置。

其核心参数是等离子体电流强度,而等离子体电流达到100万安培(1兆安)是其实现聚变能源的必要条件,未来托卡马克聚变堆必须在兆安级电流下稳定运行。

此次突破意味着该装置未来可以在超过1兆安培的等离子体电流下常规运行,这对我国自主设计运行聚变堆具有重要意义。

总结一下

据悉,对于劳伦斯利弗莫尔国家实验室(LLNL)的这次实验的重大公告,美国能源部预计在美国太平洋时间周二上午7点,也就是北京时间的13号23点左右进行直播。

人类历史会被永远改变吗?十小时后见分晓!

  来源:新智元


本公众号高薪签约长期专栏作者,欢迎具备优秀写作能力的科技从业或爱好者,联系传感器小编YG18511751369(微信号)

期待下一篇10W+出自您的笔下!

 

免责声明:本文版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。 

  

 

为您发布产品,请点击“阅读原文”

 

传感器技术 制造业的未来是智能化,智能化的基础就是传感器; 互联网的方向是物联网,物联网的基石也是传感器; 关注传感器技术,获得技术资讯、产品应用、市场机会,掌握最黑科技,为中国工业导航。
评论
  • 肖特基具有很多的应用场景, 可以做同步整流,防止电流倒灌和电源反接等,但是随着电源电流的增大,肖特基导通正向压降0.3~0.7v的劣势也越发明显,产生了很多的热,对于工程师的散热设计是个考验,增加了工程师的设计难度和产品成本,目前一种新的理想二极管及其控制器,目前正在得到越来越广泛的应用- BMS,无人机,PLC,安防,家电,电动工具,汽车等都在快速普及理想二极管有三种架构,内置电荷泵的类似无锡明芯微MX5050T这种,驱动能力会弱点,静态功耗200uA,外置电荷泵MX74700T的这种驱动能力
    王萌 2024-12-10 08:51 86浏览
  • 本文介绍Linux系统(Ubuntu/Debian通用)挂载exfat格式U盘的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。修改对应的内核配置文件# 进入sdk目录cdrk3562_linux# 编辑内核配置文件vi./kernel-5.10/arch/arm64/configs/rockchip_linux_defconfig注:不清楚内核使用哪个defc
    Industio_触觉智能 2024-12-10 09:44 92浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 50浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 110浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 51浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 88浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 71浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 87浏览
  •         在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的du特优点,所以在变频器中也发挥了非常重要的作用。  &nb
    锦正茂科技 2024-12-10 12:57 76浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 80浏览
  •         霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子
    锦正茂科技 2024-12-10 11:07 67浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 88浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 71浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 102浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 143浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦