PCB布线的直角走线、差分走线和蛇形线基础理论

面包板社区 2020-05-30 00:00

布线(Layout)是 PCB设计工程师最基本的工作技能之一。走线的好坏将直接影响到整个系统的性能,大多数高速的设计理论也要最终经过 Layout 得以实现并验证,由此可见,布线在高速 PCB设计中是至关重要的。下 面将针对实际布线中可能遇到的一些情况,分析其合理性,并给出一些比较优化 的走线策略。主要从直角走线,差分走线,蛇形线等三个方面来阐述。


1、直角走线


直角走线一般是 PCB布线中要求尽量避免的情况,也几乎成为衡量布线 好坏的标准之一,那么直角走线究竟会对信号传输产生多大的影响呢?从原理上 说,直角走线会使传输线的线宽发生变化,造成阻抗的不连续。其实不光是直角 走线,顿角,锐角走线都可能会造成阻抗变化的情况。


直角走线的对信号的影响就是主要体现在三个方面:

一是拐角可以等效为传输线上的容性负载,减缓上升时间;

二是阻抗不连续会造成信号的反射;

三是直角尖端产生的EMI。


传输线的直角带来的寄生电容可以由下面这个经验公式来计算:


C=61W(Er)[size=1]1/2[/size]/Z0


在上式中,C 就是指拐角的等效电容(单位:pF),W指走线的宽度(单位:inch), εr指介质的介电常数,Z0就是传输线的特征阻抗。举个例子,对于一个 4Mils的 50欧姆传输线(εr为4.3)来说,一个直角带来的电容量大概为0.0101pF,进而 可以估算由此引起的上升时间变化量:


T10-90%=2.2*C*Z0/2 = 2.2*0.0101*50/2 = 0.556ps


通过计算可 以看出,直角走线带来的电容效应是极其微小的。由于直角走线的线宽增加,该处的阻抗将减小,于是会产生一定的信号反射现象, 我们可以根据传输线章节中提到的阻抗计算公式来算出线宽增加后的等效阻抗, 然后根据经验公式计算反射系数:


ρ=(Zs-Z0)/(Zs+Z0)


一般直角走线导致的阻抗变化在7%-20%之间,因而反射系数最大为 0.1左右。而且,从下图可以看到,在 W/2线长的时间内传输线阻抗变化到最小, 再经过 W/2时间又恢复到正常的阻抗,整个发生阻抗变化的时间极短,往往在10ps 之内,这样快而且微小的变化对一般的信号传输来说几乎是可以忽略的。




很多人对直角走线都有这样的理解,认为尖端容易发射或接收电磁波,产生 EMI, 这也成为许多人认为不能直角走线的理由之一。然而很多实际测试的结果显示, 直角走线并不会比直线产生很明显的 EMI。也许目前的仪器性能,测试水平制约 了测试的精确性,但至少说明了一个问题,直角走线的辐射已经小于仪器本身的 测量误差。


总的说来,直角走线并不是想象中的那么可怕。至少在 GHz以下的应用 中,其产生的任何诸如电容,反射,EMI等效应在 TDR测试中几乎体现不出来,高 速 PCB设计工程师的重点还是应该放在布局,电源/地设计,走线设计,过孔等其 他方面。当然,尽管直角走线带来的影响不是很严重,但并不是说我们以后都可 以走直角线,注意细节是每个优秀工程师必备的基本素质,而且,随着数字电路 的飞速发展,PCB 工程师处理的信号频率也会不断提高,到10GHz 以上的 RF 设 计领域,这些小小的直角都可能成为高速问题的重点对象。


2、差分走线


差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,电路 中最关键的信号往往都要采用差分结构设计,什么另它这么倍受青睐呢?在 PCB 设计中又如何能保证其良好的性能呢?带着这两个问题,我们进行下一部分的讨论。




何为差分信号?通俗地说,就是驱动端发送两个等值、反相的信号,接收端通过 比较这两个电压的差值来判断逻辑状态“0”还是“1”。而承载差分信号的那一对走线 就称为差分走线。


差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面:


a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几 乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模 噪声可以被完全抵消。


b.能有效抑制 EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁 场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。


c.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单 端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的 误差,同时也更适合于低幅度信号的电路。目前流行的LVDS(low voltage differential signaling)就是指这种小振幅差分信号技术。


对于 PCB工程师来说,最关注的还是如何确保在实际走线中能完全发挥 差分走线的这些优势。也许只要是接触过 Layout的人都会了解差分走线的一般要求,那就是“等长、等距”。等长是为了保证两个差分信号时刻保持相反极性,减少 共模分量;等距则主要是为了保证两者差分阻抗一致,减少反射。“尽量靠近原则” 有时候也是差分走线的要求之一。但所有这些规则都不是用来生搬硬套的,不少工程师似乎还不了解高速差分信号传输的本质。


下面重点讨论一下 PCB差分信号设计中几个常见的误区


误区一:认为差分信号不需要地平面作为回流路径,或者认为差分走线彼此为对 方提供回流途径。造成这种误区的原因是被表面现象迷惑,或者对高速信号传输 的机理认识还不够深入。从图 1-8-15 的接收端的结构可以看到,晶体管Q3,Q4 的 发射极电流是等值,反向的,他们在接地处的电流正好相互抵消(I1=0),因而 差分电路对于类似地弹以及其它可能存在于电源和地平面上的噪音信号是不敏感的。地平面的部分回流抵消并不代表差分电路就不以参考平面作为信号返回路径, 其实在信号回流分析上,差分走线和普通的单端走线的机理是一致的,即高频信号总是沿着电感最小的回路进行回流,最大的 区别在于差分线除了有对地的耦合之外,还存在相互之间的耦合,哪一种耦合强, 那一种就成为主要的回流通路。图 1-8-16 是单端信号和差分信号的地磁场分布示意图。



在 PCB电路设计中,一般差分走线之间的耦合较小,往往只占10~20%的 耦合度,更多的还是对地的耦合,所以差分走线的主要回流路径还是存在于地平面。当地平面发生不连续的时候,无参考平面的区域,差分走线之间的耦合才会 提供主要的回流通路,见图 1-8-17所示。尽管参考平面的不连续对差分走线的影 响没有对普通的单端走线来的严重,但还是会降低差分信号的质量,增加 EMI, 要尽量避免。也有些设计人员认为,可以去掉差分走线下方的参考平面,以抑制 差分传输中的部分共模信号,但从理论上看这种做法是不可取的,阻抗如何控制?不给共模信号提供地阻抗回路,势必会造成 EMI辐射,这种做法弊大于利。




误区二:认为保持等间距比匹配线长更重要。在实际的 PCB布线中,往往不能同 时满足差分设计的要求。由于管脚分布,过孔,以及走线空间等因素存在,必须 通过适当的绕线才能达到线长匹配的目的,但带来的结果必然是差分对的部分区 域无法平行,这时候我们该如何取舍呢?在下结论之前我们先看看下面一个仿真结果。



从上面的仿真结果看来,方案 1 和方案 2 波形几乎是重合的,也就是说,间距 不等造成的影响是微乎其微的,相比较而言,线长不匹配对时序的影响要大得多 (方案3)。再从理论分析来看,间距不一致虽然会导致差分阻抗发生变化,但因 为差分对之间的耦合本身就不显著,所以阻抗变化范围也是很小的,通常在10%以 内,只相当于一个过孔造成的反射,这对信号传输不会造成明显的影响。而线长 一旦不匹配,除了时序上会发生偏移,还给差分信号中引入了共模的成分,降低 信号的质量,增加了EMI。


可以这么说,PCB 差分走线的设计中最重要的规则就是匹配线长,其它的规则都可以根据设计要求和实际应用进行灵活处理。


误区三:认为差分走线一定要靠的很近。让差分走线靠近无非是为了增强他们的 耦合,既可以提高对噪声的免疫力,还能充分利用磁场的相反极性来抵消对外界 的电磁干扰。虽说这种做法在大多数情况下是非常有利的,但不是绝对的,如果 能保证让它们得到充分的屏蔽,不受外界干扰,那么我们也就不需要再让通过彼 此的强耦合达到抗干扰和抑制 EMI的目的了。如何才能保证差分走线具有良好的 隔离和屏蔽呢?增大与其它信号走线的间距是最基本的途径之一,电磁场能量是 随着距离呈平方关系递减的,一般线间距超过4 倍线宽时,它们之间的干扰就极 其微弱了,基本可以忽略。此外,通过地平面的隔离也可以起到很好的屏蔽作用, 这种结构在高频的(10G以上)IC封装PCB 设计中经常会用采用,被称为 CPW结构, 可以保证严格的差分阻抗控制(2Z0),如图1-8-19。



差分走线也可以走在不同的信号层中,但一般不建议这种走法,因为不同的层产 生的诸如阻抗、过孔的差别会破坏差模传输的效果,引入共模噪声。此外,如果 相邻两层耦合不够紧密的话,会降低差分走线抵抗噪声的能力,但如果能保持和 周围走线适当的间距,串扰就不是个问题。在一般频率(GHz 以下),EMI也不会 是很严重的问题,实验表明,相距 500Mils的差分走线,在 3米之外的辐射能量 衰减已经达到60dB,足以满足 FCC的电磁辐射标准,所以设计者根本不用过分担 心差分线耦合不够而造成电磁不兼容问题。


3、蛇形线


蛇形线是 Layout中经常使用的一类走线方式。其主要目的就是为了调节 延时,满足系统时序设计要求。设计者首先要有这样的认识:蛇形线会破坏信号 质量,改变传输延时,布线时要尽量避免使用。但实际设计中,为了保证信号有 足够的保持时间,或者减小同组信号之间的时间偏移,往往不得不故意进行绕线。




那么,蛇形线对信号传输有什么影响呢?走线时要注意些什么呢?其中最关键的两个参数就是平行耦合长度(Lp)和耦合距离(S),如图 1-821所示。很明显, 信号在蛇形走线上传输时,相互平行的线段之间会发生耦合,呈差模形式,S越小, Lp越大,则耦合程度也越大。可能会导致传输延时减小,以及由于串扰而大大降 低信号的质量,其机理可以参考第三章对共模和差模串扰的分析。




下面是给 Layout工程师处理蛇形线时的几点建议:


1. 尽量增加平行线段的距离(S),至少大于3H,H指信号走线到参考平面的距离。通俗的说就是绕大弯走线,只要 S足够大,就几乎能完全避免相互的耦合效应。

2. 减小耦合长度Lp,当两倍的 Lp延时接近或超过信号上升时间时,产生的串扰将达到饱和。

3. 带状线(Strip-Line)或者埋式微带线(Embedded Micro-strip)的蛇形线引起的信号传输延时小于微带走线(Micro-strip)。理论上,带状线不会因为差 模串扰影响传输速率。

4. 高速以及对时序要求较为严格的信号线,尽量不要走蛇形线,尤其不能在小范围内蜿蜒走线。

5. 可以经常采用任意角度的蛇形走线,如图 1-8-20中的C结构,能有效的减少相互间的耦合。

6. 高速PCB 设计中,蛇形线没有所谓滤波或抗干扰的能力,只可能降低信号质量,所以只作时序匹配之用而无其它目的。

7. 有时可以考虑螺旋走线的方式进行绕线,仿真表明,其效果要优于正常的蛇形走线。

-END-


欢迎关注@面包板社区
及时收看工程师技术干货
↓↓↓

关注我菜单栏查看100+篇干货



#推荐阅读#

  • 工程师谈第一次PCB上电的各种“奇幻”经历,真是绝了!

  • 加速和改进PCB布线

  • 工程师第一定律:电器坏了,肯定是电容器问题!

  • 最全的硬件测试5个流程,少一个都不行!

  • 嵌入式必须会的一些硬件面试题,你敢来试试吗???

  • 学模电很头痛?那是因为你没吃透清华老师总结的这3点核心能力!

  • 常用电路图符号大全

  • MOS场效应管基本知识

  • 这么完整的LLC原理讲解,不分享出来可惜了!

  • 谈谈BOM对于产品的重要性及BOM基本框架

  • 为什么你的电源纹波那么大?

  • MOSFET数据手册你会看了吗?

  • 工程师讲解:用C语言实现状态机(实用)

  • 面向对象编程,再见!

  • 工程师不得不知的PCB基本常识

  • 如何使用示波器进行射频信号测试(深度好文)

  • 高人图解高速电路PCB回流路径

  • 警惕!CAF效应导致PCB漏电

  • 要吃透MOS管,看这个就够了!

  • 一个故事讲完CPU的工作原理


点击阅读原文,下载《EMC(电磁兼容)设计与测试案例分析 》

面包板社区 面包板社区——中国第一电子人社交平台 面包板社区是Aspencore旗下媒体,整合了电子工程专辑、电子技术设计、国际电子商情丰富资源。社区包括论坛、博客、问答,拥有超过250万注册用户,加入面包板社区,从菜鸟变大神,打造您的电子人脉社交圈!
评论 (0)
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 191浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 262浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 262浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 334浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 171浏览
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 111浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 228浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 227浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 193浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 187浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 213浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 157浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 242浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦