【技术分析】详解三代半导体材料究竟有何区别?

DT半导体材料 2022-12-07 19:17


研究机构:“全球碳化硅、氮化镓功率半导体市场预计2022年将达到18.4亿美元,2025年会进一步增长到52.9亿美元”。那么什么是半导体?
01 什么是半导体 
半导体指常温下导电性能介于导体与绝缘体之间的材料。半导体在集成电路、消费电子、通信系统、光伏发电、照明应用、大功率电源转换等领域应用。如二极管就是采用半导体制作的器件。无论从科技或是经济发展的角度来看,半导体的重要性都是非常巨大的。日大部分的电子产品,如计算机、移动电话或是数字录音机当中的核心单元都和半导体有着极为密切的关联。常见的半导体材料有硅、锗、砷化镓等,而硅更是各种半导体材料中,在商业应用上最具有影响力的一种。

具体定义
物质存在的形式多种多样,固体、液体、气体、等离子体等等。我们通常把导电性差的材料,如煤、人工晶体、琥珀、陶瓷等称为绝缘体。而把导电性比较好的金属如金、银、铜、铁、锡、铝等称为导体。可以简单的把介于导体和绝缘体之间的材料称为半导体。与导体和绝缘体相比,半导体材料的发现是最晚的,直到20世纪30年代,当材料的提纯技术改进以后,半导体的存在才真正被学术界认可。
半导体是指在常温下导电性能介于导体与绝缘体之间的材料。半导体是指一种导电性可控,范围从绝缘体到导体之间的材料。从科学技术和经济发展的角度 来看,半导体影响着人们的日常工作生活,直到20世纪30年代这一材料才被学界所认可。
02 半导体的发展史 
1833年
英国科学家电子学之父法拉第最先发现硫化银的电bai阻随着温度的变化情况不同于一般金属,一般情况下,金属的电阻随温度升高而增加,但法拉第发现硫化银材料的电阻是随着温度的上升而降低。这是半导体现象的首次发现。

1839年
法国的贝克莱尔发现半导体和电解质接触形成的结,在光照下会产生一个电压,这就是后来人们熟知的光生伏特效应,这是被发现的半导体的第二个特性。

1873年
英国的史密斯发现硒晶体材料在光照下电导增加的光电导效应,这是半导体的第三种特性。

1874年
德国的布劳恩观察到某些硫化物的电导与所加电场的方向有关,即它的导电有方向性,在它两端加一个正向电压,它是导通的;如果把电压极性反过来,它就不导电,这就是半导体的整流效应,也是半导体所特有的第四种特性。同年,舒斯特又发现了铜与氧化铜的整流效应。

半导体的这四个特性,虽在1880年以前就先后被发现了,但半导体这个名词大概到1911年才被考尼白格和维斯首次使用。而总结出半导体的这四个特性一直到1947年12月才由贝尔实验室完成。
03 三代半导体的区别 
第一代半导体材料
兴起时间:二十世纪五十年代;
代表材料:硅(Si)、锗元素(Ge)半导体材料。
历史意义:第一代半导体材料引发了集成电路(IC)为核心的微电子领域迅速发展。

由于硅材料的带隙较窄、电子迁移率和击穿电场较低,Si 在光电子领域和高频高功率器件方面的应用受到诸多限制。但第一代半导体具有技术成熟度较高且具有成本优势,仍广泛应用在电子信息领域及新能源、硅光伏产业中。
第二代半导体材料
兴起时间:20世纪九十年代以来,随着移动通信的飞速发展、以光纤通信为基础的信息高速公路和互联网的兴起,以砷化镓、磷化铟为代表的第二代半导体材料开始崭露头角。
代表材料:第二代半导体材料是化合物半导体;如砷化镓(GaAs)、锑化铟(InSb);GaAsAl、GaAsP;还有一些固溶体半导体,如Ge-Si、GaAs-GaP;玻璃半导体(又称非晶态半导体),如非晶硅、玻璃态氧化物半导体;有机半导体,如酞菁、酞菁铜、聚丙烯腈等。

性能特点:以砷化镓为例,相比于第一代半导体,砷化镓具有高频、抗辐射、耐高温的特性,因此广泛应用在主流的商用无线通信、光通讯以及国防军工用途上
历史意义:第二代半导体材料主要用于制作高速、高频、大功率以及发光电子器件,是制作高性能微波、毫米波器件及发光器件的优良材料。因信息高速公路和互联网的兴起,还被广泛应用于卫星通讯、移动通讯、光通信和GPS导航等领域。如相比于第一代半导体,砷化镓(GaAs)能够应用在光电子领域,尤其在红外激光器和高亮度的红光二极管等方面。
从21世纪开始,智能手机、新能源汽车、机器人等新兴的电子科技发展迅速,同时全球能源和环境危机突出,能源利用趋向低功耗和精细管理,传统的第一、二代半导体材料由于自身的性能限制已经无法满足科技的需求,这就呼唤需要出现新的材料来进行替代。
第三代半导体材料
起源时间:美国早在1993年就已经研制出第一支氮化镓的材料和器件,而我国最早的研究队伍——中国科学院半导体研究所在1995年也起步该方面的研究,并于2000年做出HEMT结构材料。
代表材料:第三代半导体材料主要以碳化硅(SiC)、氮化镓(GaN)、氧化锌(ZnO)、金刚石、氮化铝(AlN)为代表的宽禁带(Eg>2.3eV)半导体材料。

发展现状:在5G通信、新能源汽车、光伏逆变器等应用需求的明确牵引下,目前,应用领域的头部企业已开始使用第三代半导体技术,也进一步提振了行业信心和坚定对第三代半导体技术路线的投资。
性能分析:与第一代和第二代半导体材料相比,第三代半导体材料具有更宽的禁带宽度(>2.2eV)、更高的击穿电场、更高的热导率、更高的电子饱和速率及更高的抗辐射能力,更适合于制作高温、高频、大功率及抗辐射器件,可广泛应用在高压、高频、高温以及高可靠性等领域,包括射频通信、雷达、卫星、电源管理、汽车电子、工业电力电子等。
第三代半导体中,SiC 与 GaN 相比较,前者相对 GaN 发展更早一些,技术成熟度也更高一些;两者有一个很大的区别是热导率,这使得在高功率应用中,SiC占据统治地位;同时由于GaN具有更高的电子迁移率,因而能够比SiC 或Si 具有更高的开关速度,在高频率应用领域,GaN具备优势。
第一、二代半导体技术长期共存:现阶段是第一、二、三代半导体材料均在广泛使用的阶段。第二代的出现没有取代第一代的原因是两者在应用领域都有一定的局限性,因此在半导体的应用上常常采用兼容手段将这二者兼容,取各自的优点,从而生产出符合更高要求的产品。第三代有望全面取代:第三代宽禁带半导体材料,可以被广泛应用在各个领域,消费电子、照明、新能源汽车、导弹、卫星等,且具备众多的优良性能可突破第一、二代半导体材料的发展瓶颈,故被市场看好的同时,随着技术的发展有望全面取代第一、二代半导体材料。
由于第三代半导体材料及应用产业发明并实用于本世纪初年,各国的研究和水平相差不远,国内产业界和专家认为第三代半导体材料成了我们摆脱集成电路(芯片)被动局面、实现芯片技术追赶和超车的良机。回顾半导体发展的辉煌历史,也在一定程度上代表了人类的文明史。如果说机械的发展解放了人类的劳动力,那么半导体的发展则解放了人类的计算力。而且半导体的发展势头绝不会就此停歇,必将随着科技的发展大放异彩,对我们每个人来讲,未来的半导体,未来的世界,值得我们期待。
文章来源:上海科普公园

免责声明 | 部分素材源自网络,版权归原作者所有。如涉侵权,请联系我们处理

DT半导体材料 聚焦于半导体材料行业的最新动态
评论
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 113浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 80浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 128浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 82浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 161浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 147浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 100浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 238浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 92浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 123浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 172浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 211浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦