ADI 深度丨采用分布式PLL系统评估相位噪声的方法

亚德诺半导体 2019-04-08 11:39

对于数字波束成形相控阵,要生成本地振荡器(LO) ,通常会考虑的实现方法是向分布于天线阵列中的一系列锁相环分配常用基准频率。对于这些分布式锁相环,目前文献中还没有充分记录用于评估组合相位噪声性能的方法。


在分布式系统中,共同噪声源是相关的,而分布式噪声源如果不相关,在 RF 信号组合时就会降低。对于系统中的大部分组件,这都可以非常直观地加以评估。对于锁相环,环路中的每个组件都有与之相关联的噪声传递函数,它们的贡献是控制环路以及任何频率转换的函数。这会在尝试评估组合相位噪声输出时增加复杂性。本文基于已知的锁相环建模方法,以及对相关和不相关贡献因素的评估,提出了跟踪不同频率偏移下的分布式PLL贡献的方法。


对于任何无线电系统,都需要为接收器和激励器精心设计 LO生成的实现方法。随着数字波束成形在相控阵天线系统中不断普及,需要在大量分布式接收器和激励器中分配 LO 信号和基准频率,这让设计变得更加复杂。


在系统架构层面需要权衡的因素包括,分配所需的LO频率或分配较低的频率基准,以及在靠近使用点的物理位置产生所需的LO。通过锁相环从本地产生 LO 是一种高度集成的现成选项。下一个挑战是评估来自各种分布式组件以及集中式组件的系统级相位噪声。


采用分布式锁相环的系统如图1所示。常用基准频率被分配至多个锁相环,各产生一个输出频率。图1a中的LO输出被假设为图1b的混频器的LO输入。


图1. 分布式锁相环系统。每个振荡器都被锁相到一个共同的参考振荡器上。从1到N的LO信号都应用到相控阵中所示的混频器的LO端口上。


系统设计人员面临的一个挑战是跟踪分布式系统的噪声贡献、了解相关和不相关的噪声源,并估计整体的系统噪声。在锁相环中,这个挑战变得更加严峻,因为噪声传递函数都是锁相环中的频率转换和环路带宽设置的函数。


动机:组合锁相环测量示例

图2所示为针对组合锁相环的测量示例。这些数据是通过组合来自多个 ADRV9009 收发器的发射输出获得的。图中所示为单个 IC、两个组合 IC 和 四个组合 IC 的情况。对于这个数据集,在 IC 组合之后,可以看到明显的 10logN 改进。为了达到这个结果,需要采用一个低噪声晶体振荡器参考源。下一节建模的动机是推导出一种方法,以计算在具有许多分布式收发器的大型阵列中,更广泛地说是在具有分布式锁相环的任何架构中,这种测量结果会如何变化。


图2. 两个组合锁相环的相位噪声测量。


锁相环模型

锁相环中的噪声建模已有充分的文档记录。1-5 图 3 所示为输出相位噪声图。在这种类型的图中,设计师可以快速评估环路中每个组件的噪声贡献,而这些贡献因素累计起来即可决定整体的噪声性能。模型参数设置为代表 图2 所示的数据,源振荡器用于估算将大量 IC 组合在一起时的相位噪声。


图3. 典型的锁相环相位噪声分析,显示所有组件的噪声贡献。总噪声是所有贡献因素的总和。


要检验分布式锁相环的效果,首先要从PLL模型导出参考贡献和其余PLL组件的贡献。


将已知的PLL模型扩展为分布式PLL模型

本节介绍为具有多个分布式锁相环的系统计算组合相位噪声的过程。这种方法的前提是能够将参考振荡器的噪声贡献与VCO和环路组件的噪声贡献分离开来。图4所示为一个假设的分布式示例,一个参考振荡器对应多个PLL。这个计算假设了一个无噪声分布,这不切实际,但可以用来说明原理。假设分布式PLL的噪声贡献是不相关的,并减少10logN,其中N表示分布式PLL的数量。随着通道增加,噪声在较大偏移频率下得到改善,对于大型分布系统,噪声变得几乎完全由参考振荡器主导。


图4. 开始采用分布式锁相环相位噪声建模方法:从锁相环模型中提取参考振荡器和锁相环中除参考振荡器外的所有其他组件的相位噪声贡献。作为分布式锁相环数量的函数,组合相位噪声假设参考噪声是相关的,而分布在多个PLL之间的噪声贡献是不相关的。


图4所示的示例简化了对参考振荡器分布的假设。在真正的系统分析中,系统设计人员还应该考虑参考振荡器分布中的噪声贡献,它们会降低总体结果。但是,像这样的简化分析是非常有用的,能够让人了解架构方面的权衡会如何影响系统的总体相位噪声性能。接下来我们来看看分布系统中相位噪声的影响。


参考分布中的相位噪声说明

本节评估两个分布选项示例。考虑的第一种情况如图5所示。在这个示例中,选择了一个常用于快速调谐VCO频率的宽带PLL。参考信号的分布是通过时钟PLL IC实现的,这种IC也常用于简化数字数据链路(如JESD接口)的时序限制。左下角显示了各个贡献因素。这些贡献因素位于器件的频率,并未调整到输出频率。右下角的相位噪声图显示了不同数量的分布式PLL的系统级相位噪声。


图5. 分布中具有PLL IC的分布式宽带PLL。


该模型的有些特性值得注意。假设采用一个高性能晶体振荡器,标称频率为100 MHz,中央振荡器的单个贡献因素反映在可用的较高端晶体振荡器上,虽然不一定是最好、最昂贵的可用选择。虽然中央振荡器输出实际上会扇出到有限数量的分布式PLL,但这些PLL会再次按某个实际限值扇出并重复,以实现系统中的完整分布。对于本例中的分布贡献,假设有16个分布组件,然后假设它们会再次扇出。左下角所示的分布电路的单个贡献是不含参考振荡器贡献的PLL组件的噪声。本例中的分布假设与源振荡器同频率,并根据该函数可用的典型IC来选择噪声贡献因素。


宽带PLL假设采用S波段标称频率,设置采用1 MHz环路带宽(尽量与实际环路的带宽一般宽),以进行快速调谐。


值得注意的是,选择这些模型是为了代表可能的实际情况,且说明了阵列中的累积效应。任何详细的设计或许都能够改善特定的PLL噪声曲线,这在预料之中,且这种分析方法旨在帮助从工程角度去决定应将设计资源分配在哪些位置以获得最佳总体效果,而不是为了做出相对于可用组件的确切论断。


图5右下角的图计算了LO分布的总组合相位噪声。其中应用了各个贡献因素的PLL噪声传递函数,它们都被调整至输出频率,也包含PLL环路带宽的影响。系统数量也包括在内,并且假设它们是不相关的,因此,这个贡献减少了10logN。假设分布数量为16,如前所述,分布贡献会减少10log16。在实践中,随着分布不断重复,这种贡献会进一步减少。但是,额外的噪声贡献不那么显著。对于大型阵列中的扇出分布,噪声将由第一组有源器件主导。在16组扇出的情况下,如果每个有源器件都是16个其他有源器件的输入,那么在所有器件互不相关的情况下,16个器件的额外分布层只会降低~0.25 dB。如果继续这种分布,总体贡献将更小。因此,为了简化分析,不会考虑这种影响,且分布的噪声贡献通过计算前16个并行分布组件得出。


所得的曲线说明了几种效果。与单个PLL模型相似,近载波噪声由基准频率主导,远载波噪声由VCO主导,且在将不相关的VCO组合起来时,远载波噪声得到改善。这一点相当直观。不太直观的是,模型的值在由分布中的选择主导的偏移频率中占较大比重。这一结果导致考虑具有更低噪声分布和更窄PLL环路带宽的第二个示例。


图6显示了一种不同的方法。采用相同的低噪声晶体振荡器作为参考。但通过RF放大器来分配,而不是通过PLL重定时和重新同步。选择固定频率的分布式PLL。这会产生两种效果:采用单个频率且调谐范围较窄时,VCO本质上可以更好,且环路带宽可以变得更窄。左下角的图显示了各个贡献因素。中央振荡器与前一个例子相同。请注意分布放大器:考虑低相位噪声放大器时,它们的性能不是特别高,但比起使用PLL LC(如之前的示例)要好得多。VCO更好、环路带宽更窄时,分布式PLL在更高偏移频率下会得到改善,但在~1 kHz的中间频率下时,实际上要比宽带PLL示例差。右下角显示组合结果:参考振荡器主导低频,而高于环路带宽时,性能会由分布式PLL主导,且随着分布式PLL的阵列尺寸和数量增加而提高。


图6. 分布式窄带PLL,分布中具备放大器。


图7显示这两个示例之间的比较。注意~2 kHz到5 kHz偏移频率范围内的大范围差异。


图7. 图5和图6之间的比较,显示了基于所选的分布和架构的广泛系统级性能范围。


分布式PLL阵列级考虑因素

基于对总体系统相位噪声性能的加权贡献的理解,可以得出几个与相控阵或多通道RF系统架构相关的结论。


 PLL带宽

针对相位噪声优化的传统锁相环设计将环路带宽设置为偏移频率,以最小化总体相位噪声曲线。此时的频率一般是参考振荡器相位噪声按输出频率标准化后与VCO相位噪声相交的频率。对于具有多个锁相环的分布式系统,这可能不是最佳环路带宽。分布式组件的数量也需要考虑。


要在采用分布式锁相环实现的系统中获得最佳LO噪声,需要采用一个较窄的环路带宽来最小化参考振荡器的相关噪声贡献。


对于需要快速调优PLL的系统,通常会扩大环路带宽来优化速度。遗憾的是,这种优化分布式相位噪声贡献的思路本身就是背道而驰的。克服这一问题的选择之一是在宽带环路之前设置分布式窄带清理环路,以降低参考噪声和分布噪声相关位置的偏移频率。


 大型阵列

对于使用数千个通道的系统,如果分布式组件的贡献之间保持互不相关,则系统能够获得大幅改进。主要考虑的问题可能围绕参考振荡器的选择展开,以及面向分布式接收器和激励器维持低噪声分布系统。


 直接采样系统

随着速度和RF输入带宽持续提升的GSPS转换器的不断普及,直接采样系统正逐渐在微波频率实现。这导致出现一种有趣的取舍现象。数据转换器只需要一个时钟频率,RF调谐完全在数字域中完成。通过限制调谐范围,可以构建具备相位噪声性能更高的VCO。这也使得创建数据转换器时钟的PLL的环路带宽降低。更低的环路带宽会将参考振荡器的噪声传递函数降至更低的偏移频率,从而减少它在系统中的贡献。这一点,再加上改进过的VCO,在某些情况下可能给分布式系统带来好处,即使单通道比较结果似乎更青睐替代架构。


组件选项

根据系统架构中所需的选择,设计人员拥有大量可用的组件选项。2018年度RF、微波和毫米波产品选型指南更新版现已发布,需要的亲可点击“阅读原文”免费获取。


集成 VCO/PLL 选项包括 ADF4371/ADF4372。它们提供的输出频率分别高达32 GHz和16 GHz,采用–234 dBc/Hz的先进PLL相位噪声FOM。 ADF5610 提供高达15 GHz的输出。 ADF5355/ADF5356 的输出可达13.6 GHz,ADF4356的输出可达6.8 GHz。


对于单独的PLL和VCO配置, ADF41513 的工作频率可达26 GHz,且配有一个先进的锁相环相位噪声FOM,其相位噪声FOM为-234dBc/Hz。有时,在选择PLL IC时要考虑的一个问题是在尽可能高的频率上操作鉴相器,从倍增20logN到输出频率,最小化环路中的噪声。 HMC440, HMC4069, HMC698 和 HMC699 采用的PFD的工作频率高达1.3 GHz。对于VCO,2018年选型指南列出了几十个VCO选项,范围从2 GHz到26 GHz不等。


对于直接采样选项,ADC 和 DAC 均已发布。产品支持在L频段和S频段直接采样。ADC具有更高的输入频率带宽,支持C频段直接采样。 AD9208 是一个双通道3 GSPS ADC,输入频率为9 Ghz,支持在上Nyquist区采样。AD9213是一个单通道10 GSPS ADC,支持具有较大瞬时带宽的接收器。对于DAC, AD917x系列采用双通道12 GSPS DAC,AD916x系列采用单通道12 GSPS DAC,经过优化之后可实现更低的残留相位噪声和更好的SFDR。两个系列都支持L频段和S频段波形生成。


PS.本节仅提供入门指南。


结语

本文介绍了为采用分布式锁相环的系统评估相位噪声的方法。该方法的前提是:每个组件都可以通过其各自的噪声、组件与系统输出之间的噪声传递函数、使用的数量以及器件之间的任何相关性来进行跟踪。所示的示例并不意在对可用的组件或架构功能进行论断。它们旨在说明一种方法,以帮助设计人员在数字波束成形相控阵中,对LO中的阵列级相位噪声贡献因素以及为分布式波形发生器和接收器提供服务的时钟分布网络进行有根据的评估。

亚德诺半导体 Analog Devices, Inc.(简称ADI)始终致力于设计与制造先进的半导体产品和优秀解决方案,凭借杰出的传感、测量和连接技术,搭建连接真实世界和数字世界的智能化桥梁,从而帮助客户重新认识周围的世界。
评论
  • 车机导航有看没有懂?智能汽车语系在地化不可轻忽!随着智能汽车市场全球化的蓬勃发展,近年来不同国家地区的「Automotive Localization」(汽车在地化)布局成为兵家必争之地,同时也是车厂在各国当地市场非常关键的营销利器。汽车在地化过程中举足轻重的「汽车语系在地化」,则是透过智能汽车产品文字与服务内容的设计订制,以对应不同国家地区用户的使用习惯偏好,除了让当地车主更能清楚理解车辆功能,也能进一步提高品牌满意度。客户问题与难处某车厂客户预计在台湾市场推出新一代车款,却由于车机导航开发人
    百佳泰测试实验室 2025-01-09 17:47 101浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 176浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 158浏览
  • Snyk 是一家为开发人员提供安全平台的公司,致力于协助他们构建安全的应用程序,并为安全团队提供应对数字世界挑战的工具。以下为 Snyk 如何通过 CircleCI 实现其“交付”使命的案例分析。一、Snyk 的挑战随着客户对安全工具需求的不断增长,Snyk 的开发团队面临多重挑战:加速交付的需求:Snyk 的核心目标是为开发者提供更快、更可靠的安全解决方案,但他们的现有 CI/CD 工具(TravisCI)运行缓慢,无法满足快速开发和部署的要求。扩展能力不足:随着团队规模和代码库的不断扩大,S
    艾体宝IT 2025-01-10 15:52 129浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 144浏览
  • 1月9日,在2025国际消费电子展览会(CES)期间,广和通发布集智能语音交互及翻译、4G/5G全球漫游、随身热点、智能娱乐、充电续航等功能于一体的AI Buddy(AI陪伴)产品及解决方案,创新AI智能终端新品类。AI Buddy是一款信用卡尺寸的掌中轻薄智能设备,为用户带来实时翻译、个性化AI语音交互助手、AI影像识别、多模型账户服务、漫游资费服务、快速入网注册等高品质体验。为丰富用户视觉、听觉的智能化体验,AI Buddy通过蓝牙、Wi-Fi可配套OWS耳机、智能眼镜、智能音箱、智能手环遥
    物吾悟小通 2025-01-09 18:21 140浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 153浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 159浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 143浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 137浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦