图解数据读写与Cache操作

Linux阅码场 2022-12-06 08:00

本文原创发布于微信公众号“洛奇看世界”。


昨天读了 Baron 大佬写的介绍 Cache 细节的文档,天哪,太详细了,简直面面俱到~ 大佬就是大佬。

看完不禁想起我在 CSDN 博客上公开发表的第一篇文章,关于 Cache  何时需要对作废、何时需要刷新的分析说明,原文写于 2016 年,忍不住在这里分享一下,比较简单,希望对 Cache 操作不了解的朋友有些帮助。

Baron 写了很多安全方面的文章,自谦是非著名的Trustzone/TEE/安全渣渣,研究方向包括 ARM Trustzone、TEE, 各种 Linux 和 Android 安全, CSDN 博客地址: https://blog.csdn.net/weixin_42135087

1. 什么是 Cache?

高速缓存(Cache)主要是为了解决CPU运算速度与内存(Memory)读写速度不匹配的矛盾而存在, 是CPU与内存之间的临时存贮器,容量小,但是交换速度比内存快。

百度百科是这样介绍缓存的:

CPU要读取一个数据时,首先从Cache中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入Cache中,可以使得以后对整块数据的读取都从Cache中进行,不必再调用内存。

正是这样的读取机制使CPU读取Cache的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在Cache中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先Cache后内存。

2. Cache 的分类

Cache 的硬件实现中通常包含一级 Cache(L1 Cache),二级 Cache(L2 Cache)甚至多级 Cache;

对于一级Cache,又有 Instruction Cache(指令缓存,通常称为 I-Cache)和 Data Cache(数据缓存,通常称为 D-Cache)之分,本文准备不讨论各级 Cache 的区别以及 I-Cache 和 D-Cache 的细节,仅将这些所有实现笼统称为Cache。

本文仅针对 Cache 的读写进行简单说明并通过示意图演示什么时候需要写回(flush)缓存,什么时候需要作废(Invalidate)缓存。

目前我所知的非常强的一款 CPU: AMD RYZEN 3970x (线程撕裂者) 32 核心 64 线程,其一级缓存 3MB, 二级缓存 16MB, 三级缓存 128MB, 有朋友用这颗芯片配置了一台个人电脑,编译最新的 Android S (12) 只要 20 多分钟,绝大部分公司的服务器还做不到这个性能。

对于指令缓存的 I-Cache 和数据缓存的 D-Cache,平时 D-Cache 访问比较多,以下主要以 D-Cache 的访问为例说明,指令缓存 I-Cache 原理一样。

3. Cache 数据访问原理

Cache读写原理

图一、Cache读写原理

写入数据时:

  • 第一步,CPU 将数据写入 Cache;
  • 第二步,将 Cache 数据传送到 Memory 中相应的位置;

读取数据时:

  • 第一步,将 Memory 中的数据传送到 Cache 中;
  • 第二步,CPU 从 Cache 中读取数据;

在具体的硬件实现上,Cache 有写操作有透写(Write-Through)和回写(Write-Back)两种方式:

透写(Write-Through)

在透写式 Cache 中,CPU 的数据总是写入到内存中,如果对应内存位置的数据在 Cache 中有一个备份,那么这个备份也要更新,保证内存和 Cache 中的数据永远同步。所以每次操作总会执行图一中的步骤 1 和 2。

回写(Write-Back)

在回写式 Cache 中,把要写的数据只写到 Cache 中,并对 Cache 对应的位置做一个标记,只在必要的时候才会将数据更新到内存中。所以每次写操作都会执行步骤中的图 1,但并不是每次执行步骤 1 后都执行步骤 2 操作。

透写方式存在性能瓶颈,性能低于回写方式,现在的 CPU 设计基本上都是采用 Cache 回写方式。

通常情况下,数据只通过 CPU 进行访问,每次访问都会经过 Cache,此时数据同步不会有问题。

在有设备进行 DMA 操作的情况下,设备读写数据不再通过 Cache,而是直接访问内存。在设备和 CPU 读写同一块内存时,所取得的数据可能会不一致,如图二。

设备和CPU读写同一块内存时数据不一致

图二、设备和CPU读写同一块内存时数据不一致

CPU 执行步骤1将数据 A 写入 Cache,但并不是每次都会执行步骤 2 将数据 A 同步到内存,导致 Cache 中的数据 A 和内存中的数据 A’不一致;步骤 3 中,外部设备通过 DMA 操作时直接从内存访问数据,从而取得的是A’而不是A

设备DMA操作完成后,通过步骤 4 将数据 B 写入内存;但是由于内存中的数据不会和 Cache 自动进行同步,步骤 5不会被执行,所以 CPU 执行步骤 3 读取数据时,获取的可能是 Cache 中的数据 B’,而不是内存中的数据B;

在 CPU 和外设访问同一片内存区域的情况下,如何操作 Cache 以确保设备和 CPU 访问的数据一致就显得尤为重要,见图三。

Cache操作同步数据

图三、Cache操作同步数据

CPU 执行步骤 1 将数据 A 写入 Cache,由于设备也需要访问数据 A,因此执行步骤 2 将数据 A 通过 flush 操作同步到内存;步骤 3 中,外部设备通过 DMA 操作时直接从内存访问数据 A,最终 CPU 和设备访问的都是相同的数据。

设备 DMA 操作完成后,通过步骤 4 将数据 B 写入内存;由于 CPU 也需要访问数据 B,访问前通过 invalidate 操作作废 Cache 中的数据,从而通过 Cache 读取数据时 Cache 会从内存取数据,所以 CPU 执行步骤 6 读取数据时,获取到的是从内存更新后的数据;

4. Cache操作举例

4.1 外设数据 DMA 传输

例如,在某顶盒平台中,内存加解密在单独的安全芯片中进行,安全芯片访问的数据通过 DMA 进行传输操作。

因此,在进行内存加解密前,需要 flush D-Cache 操作将数据同步到到内存中供安全芯片访问;

加解密完成后需要执行invalidate D-Cache操作,以确保CPU访问的数据是安全芯片加解密的结果,而不是Cache之前保存的数据;

DMA进行数据加解密的示例代码:

void mem_dma_desc(
  unsigned long Mode,
  unsigned long SrcAddr, /* input data addr */
  unsigned long DestAddr, /* output data addr */
  unsigned long Slot,
  unsigned long Size)
 /* dma data size */
 
{
  ...prepare for dma encryption/decryption operation...

  /* flush data in SrcAddr from D-Cache to memory 
     to ensure dma device get the correct data */

  flush_d_cache(SrcAddr, Size);

  ...do dma operation, output will be redirect to DestAddr...
 
  /* invalidate D-Cache to ensure fetch data from memory
     instead of cached data in D-Cache */

  invalidate_d_cache(DestAddr, Size);
  return;
 }

4.2 外设 flash 的 I/O

某平台的 nand flash 的控制器也支持 DMA 读取的方式。在数据向 nand flash 写入数据时需要先 flash dcache 确保DMA 操作的数据是真实要写入的数据,而不是内存中已经过期的数据;

从nand flash 读取数据后需要 invalidate dcache,使 cache 中的数据失效,从而确保 cpu 读取的是内存数据,而不是上一次访问时缓存的结果。

nand flash 通过 DMA 方式读取数据的示例代码:

static int nand_dma_read(
   struct nand_dev *nand,
   uint64_t addr, /* read addr */
   void *buf,     /* output buffer */
   size_t len)

{
 int ret;

 ...prepare for nand flash read and device dma transfer...

 /* flush dma descriptor for nand flash read operation */
 flush_d_cache(descs, ndescs * sizeof(*descs));

 /* nand flash dma read operation */
 ret = nand_dma_run(nand, (uintptr_t)descs);

 /* invalidate read output buffer to ensure fetch data from memory
    instead of cached data in D-Cache */

 invalidate_d_cache(buf, len);

 ...other operations...
 
 return ret;
}

除了 nand flash 之外,很多硬盘也支持 DMA 方式读取。

4.3 I-Cache 和 D-Cache 的转换

通常 Cache 分为 I-Cache 和 D-Cache,取指令时访问 I-Cache,读写数据时访问 D-Cache。

但在代码搬运时,外设上存放的指令会被当作数据进行处理。

例如一段代码保存在外设(如nand  flash或硬盘)上,CPU想执行这段代码,需要先将这段代码作为数据复制到内存再将这段代码作为指令执行。

由于写入数据和读取指令分别通过 D-Cache 和 I-Cache,所以需要同步 D-Cache 和 I-Cache,即复制后需要先将 D-Cache 写回到内存,而且还需要作废当前的 I-Cache 以确保执行的是 Memory 内更新的代码,而不是 I-Cache 中缓存的数据,如图四所示:

图四、CPU复制代码后执行

CPU复制代码后执行的示例代码:

void copy_code_and_execution(
  unsigned char *src, 
  unsigned char *dest, 
  size_t len)

{
 ...copy code from src addr to dest addr...

 /* flush instructions data in D-Cache to memory */
 flush_all_d_cache();

 /* invalidate I-Cache to ensure fetch instructions from memory
    instead of cached data in I-Cache */

 invalidate_all_i_cache();

 ...jump to dest address for execution and never return...

 /* actually it never reach here if it jumps to dest successfully */
 printf("failed to jumping...\r\n");

 return
}

往期文章

  • 一篇了解TrustZone
  • 读代码,多用用这种方式
  • 程序出错了,第一件事要做什么?
  • 程序查错实战:一类常见错误的处理思路
Linux阅码场 专业的Linux技术社区和Linux操作系统学习平台,内容涉及Linux内核,Linux内存管理,Linux进程管理,Linux文件系统和IO,Linux性能调优,Linux设备驱动以及Linux虚拟化和云计算等各方各面.
评论
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 128浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 115浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 90浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 198浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 81浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 191浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 85浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 173浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 204浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 560浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 169浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 233浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦