新封装、新材料、新架构驱动后摩尔时代集成电路发展

智能计算芯世界 2022-12-06 00:00

摩尔定律预言,通过芯片工艺的演进,每 18 个月芯片上可容纳的晶体管数量翻一番,达到提成芯片性能和降低成本的目的。近些年,随着芯片工艺不断演进,硅的工艺发展趋近于其物理瓶颈,晶体管再变小变得愈加困难。在摩尔定律放缓以及算力和存储需求爆发的双重压力下,以硅为主体的经典晶体管很难维持集成电路产业的持续发展,后摩尔时代到来。后摩尔时代颠覆创新将主要围绕新封装、新材料、新架构进行,值得我们关注。


下载链接:

新封装、新材料、新架构驱动后摩尔时代集成电路发展

人工智能&芯片等技术合集(1)

人工智能&芯片等技术合集(2)

2022元宇宙系列基础设施篇(上)

2022元宇宙系列基础设施篇(下)

元宇宙系列元宇宙五大演绎趋势

金融元宇宙研究白皮书(2022)

科技巨头布局元宇宙系列合集(1)

科技巨头布局元宇宙系列合集(2)

科技巨头布局元宇宙系列合集(3)

2022 OCP全球峰会:服务器系列(1)

2022 OCP全球峰会:服务器系列(2)

2022 OCP全球峰会:服务器系列(3)

2022 OCP全球峰会:服务器系列(4)

2022 OCP全球峰会:服务器系列(5)

2022 OCP全球峰会:服务器系列(6)


新封装:提高效率、降低成本,先进封装前景广阔。随着节点缩小,工艺变得越来越复杂且昂贵,在经典平面缩放耗尽了现有技术资源、应用又要求集成更加灵活和多样化的今天,若在芯片中还想“塞进更多元件”,就必须扩展到立体三维,从异构集成(HI)中找出路。SiP 技术集成度高,研发周期短,可实现 3D 堆叠,且能解决异质集成问题,前景广阔。Chiplet 模式能满足现今高效能运算处理器的需求,具备设计弹性、成本节省、加速上市三大优势,SiP 等先进封装技术是 Chiplet 模式的重要实现基础,Chiplet 模式的兴起有望驱动先进封装市场快速发展。


新材料:化合物半导体助力半导体器件实现更高性能,迎来发展契机。目前9成半导体器件由硅制造,硅材料具有集成度高、稳定性好、功耗低、成本低等优点。但在后摩尔时代,除了更高集成度的发展方向之外,通过不同材料在集成电路上实现更优质的性能是发展方向之一。同时随着 5G、新能源汽车等产业的发展,对高频、高功率、高压的半导体需求,硅基半导体由于材料特性难以完全满足,以 GaAs、GaN、SiC 为代表的第二代和第三代半导体迎来发展契机。


新架构:架构创新迎来黄金时代。以 RISC-V 为代表的开放指令集将取代传统芯片设计模式,更高效应对快速迭代、定制化与碎片化的芯片需求。为应对大数据、人工智能等高算力的应用要求,AI NPU 兴起。存内计算架构将数据存储单元和计算单元融合为一体,能显著减少数据搬运,极大地提高计算并行度和能效。长期来看,量子、光子、类脑计算也有望取得突破。


新封装、新材料、新架构驱动后摩尔时代集成电路发展


从演进路线来看,未来集成电路的长期演进有三种主流的路线:More Moore(使用创新半导体制造工艺缩小数字集成电路的特征尺寸)、More than Moore(在系统集成方式上创新,系统性能提升不再靠单纯的晶体管特征尺寸缩小,而是更多地靠电路设计以及系统算法优化)、Beyond CMOS(使用 CMOS 以外的新器件提升集成电路性能)。


从后摩尔时代创新的方式看,主要围绕新封装、新材料和新架构三方面展开。


1.新封装领域,3D 封装、SiP(System In a Package,系统级封装)已实现规模商用,以 SiP等先进封装为基础的 Chiplet 模式未来市场规模有望快速增长,目前台积电、AMD、Intel 等厂商已纷纷推出基于 Chiplet 的解决方案。


2.新材料领域,随着 5G、新能源汽车等产业的发展,硅难以满足对高频、高功率、高压的需求以 GaAs、GaN、SiC 为代表的第二代和第三代半导体迎来发展契机。


3.新架构领域,以 RISC-V 为代表的开放指令集将取代传统芯片设计模式,更高效应对快速迭代、定制化与碎片化的芯片需求。为应对大数据、人工智能等高算力的应用要求,AI NPU 兴起。存内计算架构将数据存储单元和计算单元融合为一体,能显著减少数据搬运,极大地提高计算并行度和能效。长期来看,量子、光子、类脑计算也有望取得突破。



新封装:提高效率、降低成本,先进封装前景广阔


随着节点缩小,工艺变得越来越复杂且昂贵,在经典平面缩放耗尽了现有技术资源、应用又要求集成更加灵活和多样化的今天,若在芯片中还想“塞进更多元件”,就必须扩展到立体三维,从异构集成(HI)中找出路。


SiP 优势显著,是超越摩尔定律的必然选择路径。受限于摩尔定律的极限,单位面积可集成的元件数量越来越接近物理极限。而 SiP 封装技术能实现更高的集成度,组合的系统具有更优的性能,是超越摩尔定律的必然选择路径。相比 SOC:


(1)SiP 技术集成度更高,但研发周期反而更短。SiP技术能减少芯片的重复封装,降低布局与排线难度,缩短研发周期。采用芯片堆叠的 3D SiP 封装,能降低 PCB 板的使用量,节省内部空间。例如:iPhone7 PLUS 中采用了约 15 处不同类型的 SiP工艺,为手机内部节省空间。SiP 工艺适用于更新周期短的通讯及消费级产品市场。


(2)SiP 能解决异质(Si,GaAs)集成问题。手机射频系统的不同零部件往往采用不同材料和工艺,如:硅,硅锗(SiGe)和砷化镓(GaAs)以及其它无源元件。目前的技术还不能将这些不同工艺技术制造的零部件制作在一块硅单晶芯片上。但是采用 SiP 工艺却可以应用表面贴装技术 SMT 集成硅和砷化镓裸芯片,还可以采用嵌入式无源元件,非常经济有效地制成高性能 RF 系统。光电器件、MEMS 等特殊工艺器件的微小化也将大量应用 SiP 工艺。


Chiplet 模式有望兴起,兼具设计弹性、成本节省、加速上市三大优势。Chiplet 模式采用不同于SoC 设计的方式,将大尺寸的多核心的设计,分散到较小的芯片,再通过先进封装的形式以一种类似搭积木的模式实现整合,更能满足现今高效能运算处理器的需求;而弹性的设计方式不仅提升灵活性,也能有更好的良率及节省成本优势,并减少芯片设计时程,加速芯片 Time to market(上市)的时间。综合而言,相对于 SoC,Chiplet 将有设计弹性、成本节省、加速上市等三大优势。


SiP 等先进封装技术是 Chiplet 模式的重要实现基础,Chiplet 模式的兴起有望驱动先进封装市场快速发展。




新材料:助力半导体器件实现更高性能,迎来发展契机


目前,市面上 9 成以上半导体器件都是以第一代元素半导体材料之一,硅(Si)材料制作,具有集成度高、稳定性好、功耗低、成本低等优点。但在后摩尔时代,除了更高集成度的发展方向之外,通过不同材料在集成电路上实现更优质的性能是发展方向之一。同时随着 5G、新能源汽车等产业的发展,对高频、高功率、高压的半导体需求,硅基半导体由于材料特性难以完全满足,以 GaAs、GaN、SiC 为代表的第二代和第三代半导体迎来发展契机。



新架构:架构创新来到黄金时代


计算机架构创新诉求愈加迫切。当前计算机的发展大多选择以数值计算见长的冯·诺依曼架构,随着摩尔定理逐渐失效,冯·诺依曼架构带来的局限日益明显,存储墙、功耗墙、智能提升等问题,让当前计算机发展面临重大挑战,迫切需要架构创新,架构创新迎来黄金时代。架构创新主要包括:


  • 1.“硅-冯”范式内的架构创新:“在串行体制”内进行并行的体系结构创新。

  • 2.类硅模式:基于现行架构开发电荷状态变换的新技术,涉及 NC FET(负电容)、TFET(隧穿)、相变 FET、SET(单电子)等仍属电荷变换的非 CMOS 技术,由于能延续摩尔定律,受到了半导体业界的重视。

  • 3.类脑模式:利用包括存储器在内的各种集成电路和 3D 封装模拟神经元特性,摸索存算一体等计算,因其并行性、低功耗的特点,已经在人工智能领域引起了广泛注意,并已获得某些工业应用。

  • 4.新兴范式:基于新形态变换的量子、形态计算,涉及新的状态变换(信息强相关电子态/自旋取向)、新兴器件技术(自旋器件/量子)和新兴架构(量子计算/神经形态计算),商业化难度很大。



RISC-V 推动指令集架构创新。RISC-V 指令集完全开源,设计简单,易于移植 Unix 系统,模块化设计,完整工具链,同时有大量的开源实现和流片案例,得到很多芯片公司的认可。以 RISC-V 为代表的开放指令集及其相应的开源 SoC 芯片设计、高级抽象硬件描述语言和基于 IP 的模板化芯片设计方法,将取代传统芯片设计模式,更高效应对快速迭代、定制化与碎片化的芯片需求。目前RISC-V 在可穿戴产品上应用广泛,同时也适合服务器CPU,家用电器CPU,工控CPU的应用。


下载链接:

新封装、新材料、新架构驱动后摩尔时代集成电路发展

联邦学习技术白皮书2.0

功率半导体应用手册

中国智能芯片行业前景研究报告

信创专题报告(1)

信创专题报告(2)

人工智能&芯片等技术合集(1)

人工智能&芯片等技术合集(2)

2022元宇宙系列基础设施篇(上)

2022元宇宙系列基础设施篇(下)

元宇宙系列元宇宙五大演绎趋势

金融元宇宙研究白皮书(2022)

OCP 2021全球峰会资料汇总

OCP 2021全球峰会Chiplet汇总

科技巨头布局元宇宙系列报告合集(1)

科技巨头布局元宇宙系列报告合集(2)

科技巨头布局元宇宙系列报告合集(3)


本号资料全部上传至知识星球,更多内容请登录智能计算芯知识(知识星球)星球下载全部资料。



免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言联系删除,谢谢。



电子书<服务器基础知识全解(终极版)>更新完毕,知识点深度讲解,提供182页完整版下载。

获取方式:点击“阅读原文”即可查看PPT可编辑版本和PDF阅读版本详情。



温馨提示:

请搜索“AI_Architect”或“扫码”关注公众号实时掌握深度技术分享,点击“阅读原文”获取更多原创技术干货。


智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 68浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 85浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 119浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 180浏览
  •     为控制片内设备并且查询其工作状态,MCU内部总是有一组特殊功能寄存器(SFR,Special Function Register)。    使用Eclipse环境调试MCU程序时,可以利用 Peripheral Registers Viewer来查看SFR。这个小工具是怎样知道某个型号的MCU有怎样的寄存器定义呢?它使用一种描述性的文本文件——SVD文件。这个文件存储在下面红色字体的路径下。    例:南京沁恒  &n
    电子知识打边炉 2025-01-04 20:04 100浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 170浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
  • 随着市场需求不断的变化,各行各业对CPU的要求越来越高,特别是近几年流行的 AIOT,为了有更好的用户体验,CPU的算力就要求更高了。今天为大家推荐由米尔基于瑞芯微RK3576处理器推出的MYC-LR3576核心板及开发板。关于RK3576处理器国产CPU,是这些年的骄傲,华为手机全国产化,国人一片呼声,再也不用卡脖子了。RK3576处理器,就是一款由国产是厂商瑞芯微,今年第二季推出的全新通用型的高性能SOC芯片,这款CPU到底有多么的高性能,下面看看它的几个特性:8核心6 TOPS超强算力双千
    米尔电子嵌入式 2025-01-03 17:04 55浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 45浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦