AM:溶液法制备高性能P型WSe2薄膜晶体管及CMOS器件应用

锂电联盟会长 2022-12-05 10:59
点击左上角“锂电联盟会长”,即可关注!
▲第一作者:邹涛隅    
通讯作者:Yong-Young Noh, Cheol-Joo Kim, Yong-Sung Kim  
通讯单位:浦项科技大学,韩国标准科学研究院,韩国科学技术联合大学院大学             
论文DOI:
https://doi.org/10.1002/adma.202208934  

01

全文速览


通过打印或者印刷二维 (2D)半导体纳米片溶液可实现低成本电子器件集成。该工作通过溴分子掺杂WSe2 晶体管,实现高性能P型二维材料薄膜晶体管,其空穴迁移率达到27 cm2 V-1 s-1,且具有~107 的高开/关比。此外,基于溶液法制备的p型WSe2 和n型MoS2的互补反相器(CMOS)展现出1280的超高增益。


02

背景介绍


近年来,二维层状材料因其出色的电学和机械性能,在柔性和可穿戴集成器件领域引起了广泛关注。特别是,各种二维材料的单晶纳米片可以分散在溶液中,形成n型和p型的半导体油墨,进而通过高可加工性和低成本的图形印刷技术实现互补电路。溶液法制备的n型 MoS2薄膜晶体管已经实现了高电子迁移率(超过10 cm2 V-1 s-1)和开/关比(大约 106)。具有高迁移率的 P 型二维层状材料,例如黑磷,由于其低化学稳定性和低氧化势垒,不适用于溶液工艺。而化学稳定的材料,包括各种过渡金属二硫化物,其溶液法制备P型薄膜晶体管表现出低迁移率(约0.1 cm2 V-1 s-1)和较小的开/关比(102 - 105),从而限制了大规模、溶液加工的互补逻辑电路和高性能 p-n 异质结器件的发展。

不同于机械剥离或者CVD制备的单片二维晶体管,溶液法制备的二维薄膜晶体管的沟道是基于许多单个薄片组装而形成的连续的薄膜。研究发现纳米片与纳米片界面的电阻值相对纳米片内的电阻更高。此外,二维薄膜/金属处的高肖特基势垒也阻碍载流子注入,导致较高的接触电阻。因而,相对于P型单片二维材料晶体管,溶液法制备的P型二维薄膜晶体管的器件优化难度更大。

03

本文亮点


在本项工作中,我们通过掺杂Br2分子来提高溶液法制备的过渡金属硫族化合物p型晶体管的性能。
(1)Br2 掺杂的 WSe2 晶体管表现出 27 cm2 V-1 s-1 的场效应迁移率,同时具有接近零伏的阈值电压和超过 107 的电流开/关比。
(2)密度泛函理论 (DFT) 计算表明,Br2 分子可以物理吸附在WSe2表面上,覆盖率高达 >1/4,并且在最高价带附近引入浅受体态,来实现P型掺杂。
(3)Br2 掺杂可以有效降低肖特基势垒和提高半导体沟道电荷传输。
(4)此外,Br2分子掺杂的 WSe2 薄膜晶体管表现出出色的开关循环和应力测试稳定性。
(5)最后,溶液法制备的 p-WSe2 和 n-MoS2 CMOS 反相器的增益超过1200。
基于其CMOS的环形振荡器也表现出1kHz的稳定振荡频率。

04

图文解析


 
▲图1. 2D TMDs溶液和大面积图案化薄膜。

本文使用的不同过渡金属硫族化合物半导体纳米片的油墨是通过使用电化学剥离、超声、清洗、及离心过程制备。溶液法制备的WSe2 纳米片尺寸约为 800 nm,厚度约为2.5 nm。通过滴涂法,并结合光刻胶剥离工艺可以在二氧化硅、玻璃、以及PEN柔性衬底上形成致密的图形化的半导体薄膜。
 
▲图 2. 溶液法制备的 WSe2 晶体管的电学特性。

未处理的WSe2 晶体管的表现出典型的n型主导的双极特性,且具有较低的空穴迁移率,约为 10-3 cm2 V-1 s-1。在尝试了各种P型掺杂分子后,我们发现Br2分子是最有效的掺杂材料。经过Br2分子处理后,实现了27 cm2 V-1 s-1 的场效应空穴迁移率,同时具有接近零伏的阈值电压和超过 107 的电流开/关比。空穴迁移率增加的主要原因有两个:第一个是由于 Br2 掺杂降低了接触电阻,第二个是由于 Br2 掺杂改善了沟道中的电荷传输界面处的电阻。同时,我们发现针对二维薄膜晶体管选择掺杂剂时,掺杂材料的分子大小也至关重要。此外,Br2分子处理过的P型WSe2晶体管也表现出较好的快速开关、连续测试及应力测试稳定性。
 
▲图 3. 光电子能谱和 DFT 计算结果。

通过XPS和UPS光电子能谱,以及DFT计算,我们也分析了Br2分子P型掺杂的机理。XPS结果显示在 Br2 处理后,W4f 和 Se3d 的结合能下移了约0.30 eV。UPS结果也显示费米能级从-3.87 eV向下移动到-4.88 eV。通过DFT计算,我们比较了WSe2和 Br2/WSe2 前后电子结构。我们发现在Br2分子吸附在WSe2表面后,最高价带附近可以引入浅受体态,从而实现P型掺杂。该浅受体态主要来源于 Br2 σp* 反键分子轨道态。
 

▲图 4. 溶液处理的 CMOS 反相器和环形振荡器。

最后,我们采用基于剥离的图案化方法制备了由 p-WSe2 和 n-MoS2 薄膜晶体管组成的 CMOS 反相器及环形振荡器。通过控制沟道宽度将 p-WSe2 和 n-MoS2薄膜晶体管的漏极电流调整到相同水平,从而获得高增益。结果表明在7V的驱动电压下,可以实现1280的超高增益。进一步,基于其CMOS的环形振荡器也表现出1kHz的稳定振荡频率。

05

总结与展望


总而言之,本工作通过使用卤化物分子的p型掺杂,可以实现了具有高可靠性和可重复性的高性能p型二维 WSe2 薄膜晶体管。Br2 掺杂的 WSe2 晶体管表现出出色的工作稳定性,包括快速开关、循环测试和应力测试。本工作进一步证实溶液法制备的二维材料集成器件具有优异的性能。同时,由于其低成本和易加工性,可以进一步扩展至可穿戴生物传感器和 Si CMOS 上的集成电路等应用领域。

06

作者介绍


通讯作者介绍:
Yong-Young Noh(鲁容泳)教授,现任韩国浦项科技大学(POSTECH)化学工程系教授。主要从事打印半导体材料及相关光电子器件研究。相关成果发表在Nature Nanotechnology, Nature Electronics, Nature Communications, Advanced Materials, JACS等期刊。文章被引用20000余次,H因子70。担任IEEE Transactions of Electronic Devices等学术期刊编辑。

第一作者介绍:
邹涛隅,现为韩国浦项科技大学化学工程系在读博士研究生。主要从事半导体材料及光电器件的研究,包括薄膜晶体管,紫外-红外光电探测器,X-ray探测器。相关成果发表在Advanced Materials,Advanced Functional Materials,Advanced Optical Materials,IEEE International Electron Devices Meeting (IEDM)等期刊。

原文链接:
https://onlinelibrary.wiley.com/doi/10.1002/adma.202208934
锂电联盟会长向各大团队诚心约稿,课题组最新成果、方向总结、推广等皆可投稿,请联系:邮箱ibatteryalliance@163.com。

相关阅读:
锂离子电池制备材料/压力测试
锂电池自放电测量方法:静态与动态测量法!
软包电池关键工艺问题!
一文搞懂锂离子电池K值!
工艺,研发,机理和专利!软包电池方向重磅汇总资料分享!
揭秘宁德时代CATL超级工厂!
搞懂锂电池阻抗谱(EIS)不容易,这篇综述值得一看!
锂离子电池生产中各种问题汇编
锂电池循环寿命研究汇总(附60份精品资料免费下载)


锂电联盟会长 研发材料,应用科技
评论 (0)
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 284浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 206浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 182浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 240浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 288浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 394浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 302浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 257浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 239浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 235浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦