1纳米将成为硅基半导体工艺的终点?

传感器技术 2022-12-05 07:00

 


1纳米芯片代表什么?这可不是一个简单数字,其背后可能代表着硅基半导体的终结。

不过,尽管芯片缩微化技术挑战越来越大,但先进芯片工艺的探索却从未停止,即使1纳米这样已接近物理极限的芯片工艺,也被产业界、学术界不时曝出一些新进展。近日,财联社、台湾经济日报就曝出,台积电计划在桃园龙潭建设1纳米芯片工厂。

据悉,三星曾宣布2027年量产1.4nm工艺,台积电也预计也是在2027年左右。不过,此次台积电再次挑战1纳米,可以说是摩尔定律物理极限的工艺节点。如果台积电决定新建1纳米芯片工厂,那么也代表其已经开始为1nm做规划,且可能有相关技术突破。


ASML称能保障1nm工艺实现


大家都知道,高端芯片的生产离不开先进的光刻机。而1nm芯片要实现真正量产不仅还需要很长时间,而且还将依赖关键设备,即下一代EUV光刻机。

据悉,下一代EUV光刻机必须要升级下一代的高NA(数值孔径)标准,从现在的0.33 NA提升到0.55 NA,更高的NA意味着更分辨率更高,是3nm之后的工艺必备的条件。

不过,对于下一代EUV光刻机的供应,全球光刻机巨头ASML持乐观态度。按照ASML的计划,下一代EUV光刻机的试验型号最快2023年就开始出货,2025年后达到正式量产能力,不过价格也不菲,售价将达到4亿美元以上。

今年5月,ASML也曾发表文章称,现有技术可以实现 1nm 工艺,摩尔定律可继续生效十年甚至更长时间。

根据摩尔定律,每隔 18-24个月,封装在微芯片上的晶体管数量便会增加一倍,芯片的性能也会随之翻一番。不过,增加芯片面积、缩小元件尺寸以及优化器件电路设计是实现晶体管数量翻倍的三个重要因素。

对此,ASML表示,在过去的15年里,很多创新方法使摩尔定律依然生效且状况良好。从整个行业的发展路线来看,它们将在未来十年甚至更长时间内让摩尔定律继续保持这种势头。

同时,ASML也指出,在元件方面,目前的技术创新足够将芯片的制程推进至至少1纳米节点,其中包括gate-all-around FETs,nanosheet FETs,forksheet FETs,以及 complementary FETs等诸多前瞻技术。此外,光刻系统分辨率的改进(预计每 6 年左右缩小 2 倍)和边缘放置误差(EPE)对精度的衡量也将进一步推动芯片尺寸缩小的实现。

ASML还表示,其EPE路线图是全方位光刻技术的关键,将通过不断改建光刻系统和发展应用产品(包括量测和检测系统)来实现。

从ASML的表态来看,芯片缩微化仍然有技术发展空间,至少在光刻机设备上将有很好保障,加上通过不断挖掘新工艺、新技术,探索新方向,1纳米芯片工艺未必不可能。


挑战1纳米半导体材料——半金属铋


当然,除了关键设备光刻机之外,要想实现1纳米芯片还远远不够,还需从材料上寻求更大的突破。

这里也特别提一下2021年一项学术界的研究成果:半金属铋(Bi)。针对硅材料达到物理极限的科学界难题,麻省理工学院(MIT)的孔静教授领导的一支国际联合攻关团队成功攻克了半导体领域的二维材料的连接难题,研发出半导体新材料——半金属铋(Bi)。这项成果直接将使晶圆的先进制程从纳米级微观进入到原子级。

一直以来,尽管科学界对二维材料寄予厚望,却苦于无法解决二维材料高电阻、低电流等问题,但使用原子级薄材料铋(Bi)代替硅,有效地将这些2D材料连接到其他芯片元件,开启了一个新的研究方向。

据悉,这项研究是MIT、台大、台积电共同合力的成果。自2019年,这三个机构便展开了长达1年半的跨国合作。这个重大突破先由孔静教授领导的MIT团队发现在二维材料上搭配半金属铋(Bi)的电极,能大幅降低电阻并提高传输电流。台积电技术研究部门则将铋(Bi)沉积制程进行优化。最后,台大团队运用氦离子束微影系统将元件通道成功缩小至纳米尺寸,终于获得突破性的研究成果。

由此可见,未来,原子级薄材料将是硅基晶体管的一种有前途的替代品。

目前,1nm工艺节点仍处于探索阶段,而全球的产学研各界都在进行着相关工艺和材料的研究。比如,IBM和三星就曾公布一种在芯片上垂直堆叠晶体管的新设计,被称为垂直传输场效应晶体管,也是可能突破1nm制程工艺瓶颈的技术路线。

因此,尽管半金属铋(Bi)是其中一个技术选项,但也不能保证台积电未来量产时确定使用半金属铋,不过这也证明台积电也很早就在1纳米芯片工艺上进行了技术布局,而半金属铋(Bi)对芯片工艺缩微化具有十分重要的意义。


1纳米以下该怎么办?


如果芯片工艺进入1纳米以下,量子隧穿效应大增,将形成“电子失控”,使芯片失效。这种情况下,我们该如何实现?

比利时微电子研究中心(IMEC)就曾表示,搭配全新技术,“摩尔定律要前进多少个世代都不是问题。”该机构还表示,1nm制程2027年就可实现商业化,之后的0.7nm预计将在2029年后实现量产。这一预测似乎还比台积电、三星的预测更为乐观。

据悉,IMEC已经与ASML在下一代EUV设备研发工作展开深度合作,日本半导体设备厂商东京电子也参与其中。此外,IMEC还开发了一种新方法,可以在采用1nm制程工艺技术构建的芯片中使用金属互连来减轻焦耳热效应。

对于1纳米以下工艺,在2019年的Hotchips会议上,台积电研发负责人、技术研究副总经理黄汉森(Philip Wong)曾在演讲中就谈到过半导体工艺极限的问题,且认为到了2050年,晶体管来到氢原子尺度,即0.1nm。关于未来的技术路线,黄汉森认为像碳纳米管(1.2nm尺度)、二维层状材料等可以将晶体管变得更快、更迷你;同时,相变内存(PRAM)、旋转力矩转移随机存取内存(STT-RAM)等会直接和处理器封装在一起,缩小体积,加快数据传递速度;此外还有3D堆叠封装技术。

这里还特别提一下湖南大学团队在2021年取得的一个创新研究成果。该团队实现了超短沟道的垂直场效应晶体管(VFET),沟道长度可以缩短到0.65nm,意味着芯片工艺,可以进入到1nm级别,其研究的论文还登上了《Nature Electronics》。

当然,无论是1纳米,还是1纳米以下芯片工艺,都还停留在技术验证阶段,甚至还处在实验室阶段,离真正商业化量产还有很长的距离,但毫无疑问这些前瞻性的研究都在为1纳米及以下工艺带来了更多的希望和可能。也许,很多人对1纳米及以下芯片持怀疑态度,甚至称“战略性吹牛”,但毫无疑问,从技术性原理到实际量产生产还有足够的时间去验证和实践。

作者:张河勋
EET电子工程专辑 


本公众号高薪签约长期专栏作者,欢迎具备优秀写作能力的科技从业或爱好者,联系传感器小编YG18511751369(微信号)

期待下一篇10W+出自您的笔下!

 

免责声明:本文版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。 

  

 

为您发布产品,请点击“阅读原文”

 

传感器技术 制造业的未来是智能化,智能化的基础就是传感器; 互联网的方向是物联网,物联网的基石也是传感器; 关注传感器技术,获得技术资讯、产品应用、市场机会,掌握最黑科技,为中国工业导航。
评论
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 71浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 80浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 119浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 173浏览
  • PLC组态方式主要有三种,每种都有其独特的特点和适用场景。下面来简单说说: 1. 硬件组态   定义:硬件组态指的是选择适合的PLC型号、I/O模块、通信模块等硬件组件,并按照实际需求进行连接和配置。    灵活性:这种方式允许用户根据项目需求自由搭配硬件组件,具有较高的灵活性。    成本:可能需要额外的硬件购买成本,适用于对系统性能和扩展性有较高要求的场合。 2. 软件组态   定义:软件组态主要是通过PLC
    丙丁先生 2025-01-06 09:23 85浏览
  • 根据Global Info Research项目团队最新调研,预计2030年全球封闭式电机产值达到1425百万美元,2024-2030年期间年复合增长率CAGR为3.4%。 封闭式电机是一种电动机,其外壳设计为密闭结构,通常用于要求较高的防护等级的应用场合。封闭式电机可以有效防止外部灰尘、水分和其他污染物进入内部,从而保护电机的内部组件,延长其使用寿命。 环洋市场咨询机构出版的调研分析报告【全球封闭式电机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球封闭式电机总体规
    GIRtina 2025-01-06 11:10 104浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 127浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 45浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 145浏览
  • 本文介绍Linux系统更换开机logo方法教程,通用RK3566、RK3568、RK3588、RK3576等开发板,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。制作图片开机logo图片制作注意事项(1)图片必须为bmp格式;(2)图片大小不能大于4MB;(3)BMP位深最大是32,建议设置为8;(4)图片名称为logo.bmp和logo_kernel.bmp;开机
    Industio_触觉智能 2025-01-06 10:43 87浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 75浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦