引领万物互联浪潮,光鉴科技打造全栈式3D技术布局

MEMS 2022-12-05 00:00

3D视觉的本质是解决数字世界和物理世界连接的问题,数字经济时代,大量的智能设备需要与我们真实的生活环境进行交互,构建一个万物互联的时代,这些都需要通过视觉技术来解决”在接受OFweek维科网电子工程编辑专访时,光鉴科技创始人&CEO朱力博士说。

“我们希望把光学和人工智能技术深度地结合在一起,给市场提供完整的视觉感知方案。”

光鉴科技创始人&CEO朱力博士

随着光电技术、AI视觉技术的快速发展,机器代替人眼进行识别的3D视觉技术,凭借自动化、便捷、安全、稳定、准确等特点,无论在消费级还是工业级应用场景中得到了广泛应用。

据介绍,光鉴科技成立于2018年,是一家致力于提供自主研发的纳米光子芯片结合人工智能算法的3D视觉感知公司。公司的核心技术主要体现在两个方面,即光学和AI技术,包括拥有自主知识产权的纳米光学技术,及其一系列的3D相机光学和硬件系统,同时具备3D视觉感知交互能力。

“光鉴科技连接了上游光学零部件,以及下游具体的应用场景,把零部件通过我们的光学系统加上AI算法,整合在一起为客户提供3D视觉感知解决方案。”朱力博士表示,“在应用方面,手机的屏下3D人脸识别方案、汽车智能座舱的人机交互、机器人的视觉导航避障、IoT设备的生物识别,是光鉴科技发力的四大重点领域。”

据了解,光鉴科技能够为全球车企提供从底层的3D相机到应用算法完整解决方案。今年,光鉴科技全球首款车规级结构光3D相机调试成功,该方案将为各大车企提供全新的技术思路。

光鉴科技车规级结构光3D相机

在智能手机行业,光鉴科技是业界第一家,目前也是唯一一家能够真正在屏幕下实现3D视觉方案的公司。今年,光鉴科技和OPPO手机联合发布了全球首款柔性OLED屏下3D概念手机,成功解决了部分手机屏幕存在的“齐刘海”问题,将完整的全面屏幕和先进的3D视觉功能集于一身。


光学+AI全栈式方案能力

目前,行业内主流的3D视觉技术路线主要包括三种:结构光技术、飞行时间法(ToF)、双目成像。
凭借强大的技术研发能力,短短三年时间,光鉴科技打通了从光学模组、3D摄像头模组、嵌入式系统的优化方案以及智能硬件的3D人脸算法等软硬一体的全栈技术链,并覆盖结构光和ToF技术两种路径解决方案,成为集产学研一体化的3D视觉感知技术企业。
“结构光和ToF的技术特点非常不一样。”朱力博士介绍道:“结构光技术的近距离精度比较高,比较适合静态环境下,近距离的3D视觉感知;而ToF可以看得更远,比较适合动态环境下,中远距离的3D视觉感知。”
在场景应用中,比如人脸支付、门禁、手机、汽车DMS等识别距离在一米以内的场景下,采用结构光技术会更适合;而ToF技术适合应用于机器人导航和避障的场景中。
朱力博士认为,从成本上来看,以消费电子为例,在类似应用场景下,结构光和ToF方案的成本是比较接近的,所以主要是根据场景需求来选择不同的技术路径。
据了解,光鉴科技拥有以Aurora结构光和Stellar 系列ToF深度相机为代表的产品矩阵,能够满足包括智能终端、机器人、汽车座舱、工厂和物流等不同场景下对3D视觉感知的特定需求。同时,在软件算法领域,光鉴科技也构建起多场景算法壁垒,助力硬件产品矩阵能够为更多场景实现3D视觉技术赋能。

技术创新,打破苹果壁垒

早在2018年,光鉴科技就开始探索3D视觉技术在智能手机上的应用。时至今日,光鉴科技已实现了全球唯一不依赖于苹果VCSEL的3D结构光方案。
2017年,苹果发布的iPhone X,首次搭载了基于3D结构光模组的FaceID,目前已经累计有十多亿台手机都在用这项技术,但FaceID并没有在安卓手机上普及。
朱力博士认为,苹果FaceID难以普及的核心痛点主要在三个方面:
第一,FaceID的方案必须在屏幕上开孔,由此产生的“大刘海”、“药丸屏”占据了屏幕位置,限制了手机设计的灵活性;
第二,苹果本身有很强的专利壁垒,限制了国内手机厂商的应用;
第三,FaceID相关零部件成本较高。
而光鉴科技的屏下3D结构光技术全方位地解决了这三个痛点问题,并且与苹果FaceID相比,成本降低了一半,成为推动3D 屏下Face ID的关键。
继去年光鉴科技发布与中兴合作的刚性OLED屏下3D方案之后,今年,光鉴科技携手OPPO推出全球首款柔性OLED屏下的3D概念手机。
全球首款柔性OLED屏下3D概念手机
据了解,此款柔性OLED屏下3D概念手机基于光鉴科技屏下3D摄像解决方案,以自研纳米光学芯片的3D结构光技术为核心,有效解决屏幕外观完整性与前置摄像头拍照性能的兼顾问题,真正实现将前置摄像头隐藏于屏幕下方。
同时,纳米光子芯片结合边发射激光器(EEL),解决了屏幕透光率较低导致接收端探测信号较弱痛点,即使将摄像头隐藏在屏幕下方,依旧可以实现优秀的拍照效果。
众所周知,屏下结构光最大的难点是“透光率”。把3D相机配置在手机屏幕后面,会带来大概20多倍的光学损耗。然而,光鉴科技的“屏下方案”依然能够达到与苹果的“非屏下方案”对等的性能,实现99.9%的识别率,达到国家银行卡检测中心相关的行业技术标准的要求
朱力博士介绍,为了测试“屏下方案”的识别率,光鉴科技的团队选择有“日光城”之城的拉萨,在120000 lux的户外光照强度下,完成并通过了极端光照环境下的成像与感光测试。
朱力博士认为,屏下3D结构光能够在柔性OLED和刚性OLED屏幕上同时应用,就意味着该技术在安卓智能手机生态中已经具有了普适性,拥有了大规模应用的可能。

回顾成绩,规划未来

复盘光鉴科技成立四年以来的成就,可归结为几个维度。
在技术战略维度,光鉴科技的技术路线覆盖结构光和ToF,核心技术实现了从光学系统到芯片+3D视觉感知全栈技术链的突破,成为全球唯一能够真正在屏幕下实现3D结构光视觉方案的公司。以技术和产品为核心构建软硬件一体化解决方案矩阵,以行业痛点为准则,满足多样化3D视觉升级需求。
在业务市场维度,光鉴科技注重技术与实际场景的有机结合,其3D视觉技术在智能手机、汽车、机器人及物联网等领域都实现了落地应用,长期与下游客户系统的深度绑定,让光鉴科技能够深入理解和掌握客户的业务需求,从而建立起长期的业务壁垒。
提及下一步的规划,朱力博士回答:未来几年,光鉴科技将重点推进智能手机、汽车、机器人及物联网这四大业务方向,进而撬动各行各业的3D视觉感知升级,推动万物互联时代的到来。
朱力博士认为,中国市场是一个非常快能够实现从技术到产品化转化的一个市场,市场机会多,迭代速度快,产品能够得到快速的完善,但竞争也非常激烈,一旦一个市场跑出来以后,可能会有很多人参与,利润会受到影响。
海外市场虽然入驻门槛比较高,但一旦进入以后,能够获得的利润和市场稳定性会更好一些,朱力博士坦言。未来,“出海”或将成为光鉴科技新的业务增长点。

延伸阅读:
《自动驾驶汽车、机器人出租车及其传感器-2021版》
《激光雷达(LiDAR)技术及市场-2022版》
《汽车雷达技术及市场-2022版》
《汽车激光雷达(LiDAR)专利全景分析-2022版》

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 111浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 87浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 58浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 111浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 68浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 101浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 120浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 102浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 125浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 98浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 119浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 73浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦