深入GPU硬件架构及运行机制(上)

智能计算芯世界 2022-12-03 00:00

  • 一、导言
    • 1.1 为何要了解GPU?
    • 1.2 内容要点
    • 1.3 带着问题阅读
  • 二、GPU概述

    • 2.1 GPU是什么?

    • 2.2 GPU历史

      • 2.2.1 NV GPU发展史

      • 2.2.2 NV GPU架构发展史

    • 2.3 GPU的功能

  • 三、GPU物理架构

    • 3.1 GPU宏观物理结构

    • 3.2 GPU微观物理结构

      • 3.2.1 NVidia Tesla架构

      • 3.2.2 NVidia Fermi架构

      • 3.2.3 NVidia Maxwell架构

      • 3.2.4 NVidia Kepler架构

      • 3.2.5 NVidia Turing架构

    • 3.3 GPU架构的共性

  • 四、GPU运行机制

    • 4.1 GPU渲染总览

    • 4.2 GPU逻辑管线

    • 4.3 GPU技术要点

      • 4.3.1 SIMD和SIMT

      • 4.3.2 co-issue

      • 4.3.3 if - else语句

      • 4.3.4 Early-Z

      • 4.3.5 统一着色器架构(Unified shader Architecture)

      • 4.3.6 像素块(Pixel Quad)

    • 4.4 GPU资源机制

      • 4.4.1 内存架构

      • 4.4.2 GPU Context和延迟

      • 4.4.3 CPU-GPU异构系统

      • 4.4.4 GPU资源管理模型

      • 4.4.5 CPU-GPU数据流

      • 4.4.6 显像机制

    • 4.5 Shader运行机制

    • 4.6 利用扩展例证

  • 五、总结

    • 5.1 CPU vs GPU

    • 5.2 渲染优化建议

    • 5.3 GPU的未来

    • 5.4 结语

  • 参考文献

  • 特别说明

一、导言

对于大多数图形渲染开发者,GPU是既熟悉又陌生的部件,熟悉的是每天都需要跟它打交道,陌生的是GPU就如一个黑盒,不知道其内部硬件架构,更无从谈及其运行机制。
本文以NVIDIA作为主线,将试图全面且深入地剖析GPU的硬件架构及运行机制,主要涉及PC桌面级的GPU,不会覆盖移动端、专业计算、图形工作站级别的GPU。

下载链接:
NVIDIA GPU架构白皮书
1、NVIDIA A100 Tensor Core GPU技术白皮书
2、NVIDIA Kepler GK110-GK210架构白皮书
3、NVIDIA Kepler GK110-GK210架构白皮书
4、NVIDIA Kepler GK110架构白皮书
5、NVIDIA Tesla P100技术白皮书
6、NVIDIA Tesla V100 GPU架构白皮书
7、英伟达Turing GPU 架构白皮书

GPU技术专题下载链接
《GPU高性能计算概述》 
《GPU深度学习基础介绍》 
《OpenACC基本介绍》 
《CUDA CC 编程介绍》 
《CUDA Fortr基本介绍》
深度报告:GPU研究框架
CPU和GPU研究框架合集

1.1 为何要了解GPU?

了解GPU硬件架构和理解运行机制,好处多多,总结出来有:
  • 理解GPU其物理结构和运行机制,GPU由黑盒变白盒。
  • 更易找出渲染瓶颈,写出高效率shader代码。
  • 紧跟时代潮流,了解最前沿渲染技术!
  • 技多不压身!

1.2 内容要点

本文的内容要点提炼如下:
  • GPU简介、历史、特性。
  • GPU硬件架构。
  • GPU和CPU的协调调度机制。
  • GPU缓存结构。
  • GPU渲染管线。
  • GPU运行机制。
  • GPU优化技巧。

1.3 带着问题阅读

适当带着问题去阅读技术文章,通常能加深理解和记忆,阅读本文可带着以下问题:

1、GPU是如何与CPU协调工作的?

2、GPU也有缓存机制吗?有几层?它们的速度差异多少?

3、GPU的渲染流程有哪些阶段?它们的功能分别是什么?

4、Early-Z技术是什么?发生在哪个阶段?这个阶段还会发生什么?会产生什么问题?如何解决?

5、SIMD和SIMT是什么?它们的好处是什么?co-issue呢?

6、GPU是并行处理的么?若是,硬件层是如何设计和实现的?

7、GPC、TPC、SM是什么?Warp又是什么?它们和Core、Thread之间的关系如何?

8、顶点着色器(VS)和像素着色器(PS)可以是同一处理单元吗?为什么?

9、像素着色器(PS)的最小处理单位是1像素吗?为什么?会带来什么影响?

10、Shader中的if、for等语句会降低渲染效率吗?为什么?

11、如下图,渲染相同面积的图形,三角形数量少(左)的还是数量多(右)的效率更快?为什么?

12、GPU Context是什么?有什么作用?

13、造成渲染瓶颈的问题很可能有哪些?该如何避免或优化它们? 

二、GPU概述

2.1 GPU是什么?

GPU全称是Graphics Processing Unit,图形处理单元。它的功能最初与名字一致,是专门用于绘制图像和处理图元数据的特定芯片,后来渐渐加入了其它很多功能。
NVIDIA GPU芯片实物图
我们日常讨论GPU和显卡时,经常混为一谈,严格来说是有所区别的。GPU是显卡(Video card、Display card、Graphics card)最核心的部件,但除了GPU,显卡还有扇热器、通讯元件、与主板和显示器连接的各类插槽。
对于PC桌面,生产GPU的厂商主要有两家:
NVIDIA:英伟达,是当今首屈一指的图形渲染技术的引领者和GPU生产商佼佼者。NVIDIA的产品俗称N卡,代表产品有GeForce系列、GTX系列、RTX系列等。
AMD:既是CPU生产商,也是GPU生产商,它家的显卡俗称A卡。代表产品有Radeon系列。
当然,NVIDIA和AMD也都生产移动端、图形工作站类型的GPU。此外,生产移动端显卡的厂商还有ARM、Imagination Technology、高通等公司。

2.2 GPU历史

GPU自从上世纪90年代出现雏形以来,经过20多年的发展,已经发展成不仅仅是渲染图形这么简单,还包含了数学计算、物理模拟、AI运算等功能。

2.2.1 NV GPU发展史

以下是GPU发展节点表:
1995 – NV1
NV1的渲染画面及其特性。
1997 – Riva 128 (NV3), DX3
1998 – Riva TNT (NV4), DX5
  • 32位颜色, 24位Z缓存, 8位模板缓存

  • 双纹理, 双线性过滤

  • 每时钟2像素 (2 ppc)

1999 - GeForce 256(NV10)
固定管线,支持DirectX 7.0
硬件T&L(Transform & lighting,坐标变换和光照)
  • 立方体环境图(Cubemaps)

  • DOT3 – bump mapping

  • 2倍各向异性过滤

  • 三线性过滤

  • DXT纹理压缩

  • 4ppc


引入“GPU”术语
2001 - GeForce 3
NV20的渲染画面及其特性。
  • 顶点着色器

  • 像素着色器

  • DirectX 8.0

  • Shader Model 1.0

  • 可编程渲染管线

  • 3D纹理

  • 硬件阴影图

  • 8倍各向异性过滤

  • 多采样抗锯齿(MSAA)

  • 4 ppc


2003 - GeForce FX系列(NV3x)
  • HLSL
  • CGSL
    • GLSL
    • 256顶点操作指令
    • 512像素操作指令
    • 256顶点操作指令
    • 32纹理 + 64算术像素操作指令
    • DirectX 9.0
    • Shader Model 2.0
    • Shader Model 2.0a
    • 着色语言
NV30的渲染画面及其特性。
  • 2004 - GeForce 6系列 (NV4x)
    • 64位渲染纹理(Render Target)
    • FP16*4 纹理过滤和混合
    • 分支、循环、声明等
    • DirectX 9.0c
    • Shader Model 3.0
    • 动态流控制
    • 顶点纹理读取
    • 高动态范围(HDR)
NV40的渲染画面及其特性。
  • 2006 - GeForce 8系列 (G8x)
    NV G80的渲染画面及其特性。
    • 几何着色器(Geometry Shaders)
    • 没有上限位(No caps bits)
    • 统一的着色器(Unified Shaders)
    • DirectX 10.0
    • Shader Model 4.0
    • Vista系统全新驱动
    • 基于GPU计算的CUDA问世
    • GPU计算能力以GFLOPS计量。
  • 2010 - GeForce 405(GF119)
    • 更多指令、存储单元、寄存器
    • 面向对象着色语言
    • 曲面细分
    • 计算着色器
    • 曲面细分(Tessellation)
    • 计算着色器(Compute Shader)
    • 外壳着色器(Hull Shader)
    • 镶嵌单元(tessellator)
    • 域着色器(Domain Shader)
    • 支持Stream Output
    • 多线程支持
    • 改进的纹理压缩
    • DirectX 11.0
      DirectX 11的渲染管线。
    • Shader Model 5.0
  • 2014 - GeForceGT 710(GK208)
    • 轻量化驱动层
    • 硬件级多线程渲染支持
    • DirectX 12.0
    • 更完善的硬件资源管理
  • 2016 - GeForceGTX 1060 6GB
    支持RTX光线追踪的显卡列表。
    • 首次支持RTX和DXR技术,即支持光线追踪
    • 引入RT Core(光线追踪核心)
  • 2018 - TITAN RTX(TU102)
    • DirectX 12.1,OpenGL 4.5
    • 6GPC,36TPC,72SM,72RT Core,...
    • 8K分辨率,1770MHz主频,24G显存,384位带宽
从上面可以看出来,GPU硬件是伴随着图形API标准、游戏一起发展的,并且它们形成了相互相成、相互促进的良性关系。

2.2.2 NV GPU架构发展史

众所周知,CPU的发展符合摩尔定律:每18个月速度翻倍。
处理芯片晶体管数量符合摩尔定律,图右是摩尔本人,Intel的创始人
而NVIDIA创始人黄仁勋在很多年前曾信誓旦旦地说,GPU的速度和功能要超越摩尔定律,每6个月就翻一倍。NV的GPU发展史证明,他确实做到了!GPU的提速幅率远超CPU:
NVIDIA GPU架构历经多次变革,从起初的Tesla发展到最新的Turing架构,发展史可分为以下时间节点:
  • 2008 - Tesla
    Tesla最初是给计算处理单元使用的,应用于早期的CUDA系列显卡芯片中,并不是真正意义上的普通图形处理芯片。
  • 2010 - Fermi
    Fermi是第一个完整的GPU计算架构。首款可支持与共享存储结合纯cache层次的GPU架构,支持ECC的GPU架构。
  • 2012 - Kepler
    Kepler相较于Fermi更快,效率更高,性能更好。
  • 2014 - Maxwell
    其全新的立体像素全局光照 (VXGI) 技术首次让游戏 GPU 能够提供实时的动态全局光照效果。基于 Maxwell 架构的 GTX 980 和 970 GPU 采用了包括多帧采样抗锯齿 (MFAA)、动态超级分辨率 (DSR)、VR Direct 以及超节能设计在内的一系列新技术。
  • 2016 - Pascal
    Pascal 架构将处理器和数据集成在同一个程序包内,以实现更高的计算效率。1080系列、1060系列基于Pascal架构
  • 2017 - Volta
    Volta 配备640 个Tensor 核心,每秒可提供超过100 兆次浮点运算(TFLOPS) 的深度学习效能,比前一代的Pascal 架构快5 倍以上。
  • 2018 - Turing
    Turing 架构配备了名为 RT Core 的专用光线追踪处理器,能够以高达每秒 10 Giga Rays 的速度对光线和声音在 3D 环境中的传播进行加速计算。Turing 架构将实时光线追踪运算加速至上一代 NVIDIA Pascal™ 架构的 25 倍,并能以高出 CPU 30 多倍的速度进行电影效果的最终帧渲染。2060系列、2080系列显卡也是跳过了Volta直接选择了Turing架构。
下图是部分GPU架构的发展历程:

2.3 GPU的功能

现代GPU除了绘制图形外,还担当了很多额外的功能,综合起来如下几方面:
  • 图形绘制。
    这是GPU最传统的拿手好戏,也是最基础、最核心的功能。为大多数PC桌面、移动设备、图形工作站提供图形处理和绘制功能。
  • 物理模拟。
    GPU硬件集成的物理引擎(PhysX、Havok),为游戏、电影、教育、科学模拟等领域提供了成百上千倍性能的物理模拟,使得以前需要长时间计算的物理模拟得以实时呈现。
  • 海量计算。
    计算着色器及流输出的出现,为各种可以并行计算的海量需求得以实现,CUDA就是最好的例证。
  • AI运算。
    近年来,人工智能的崛起推动了GPU集成了AI Core运算单元,反哺AI运算能力的提升,给各行各业带来了计算能力的提升。
  • 其它计算。
    音视频编解码、加解密、科学计算、离线渲染等等都离不开现代GPU的并行计算能力和海量吞吐能力。

三、GPU物理架构

3.1 GPU宏观物理结构

由于纳米工艺的引入,GPU可以将数以亿记的晶体管和电子器件集成在一个小小的芯片内。从宏观物理结构上看,现代大多数桌面级GPU的大小跟数枚硬币同等大小,部分甚至比一枚硬币还小。
当GPU结合散热风扇、PCI插槽、HDMI接口等部件之后,就组成了显卡(下图)。
显卡不能独立工作,需要装载在主板上,结合CPU、内存、显存、显示器等硬件设备,组成完整的PC机。
搭载了显卡的主板。

3.2 GPU微观物理结构

GPU的微观结构因不同厂商、不同架构都会有所差异,但核心部件、概念、以及运行机制大同小异。下面将展示部分架构的GPU微观物理结构。

3.2.1 NVidia Tesla架构

Tesla微观架构总览图如上。下面将阐述它的特性和概念:
  • 拥有7组TPC(Texture/Processor Cluster,纹理处理簇)
  • 每个TPC有两组SM(Stream Multiprocessor,流多处理器)
  • 每个SM包含:
    • 6个SP(Streaming Processor,流处理器)
    • 2个SFU(Special Function Unit,特殊函数单元)
    • L1缓存、MT Issue(多线程指令获取)、C-Cache(常量缓存)、共享内存
  • 除了TPC核心单元,还有与显存、CPU、系统内存交互的各种部件。

3.2.2 NVidia Fermi架构

Fermi架构如上图,它的特性如下:
  • 拥有16个SM
  • 每个SM:
    • 2个Warp(线程束)
    • 两组共32个Core
    • 16组加载存储单元(LD/ST)
    • 4个特殊函数单元(SFU)
  • 每个Warp:
    • 16个Core
    • Warp编排器(Warp Scheduler)
    • 分发单元(Dispatch Unit)
  • 每个Core:
    • 1个FPU(浮点数单元)
    • 1个ALU(逻辑运算单元)

3.2.3 NVidia Maxwell架构

采用了Maxwell的GM204,拥有4个GPC,每个GPC有4个SM,对比Tesla架构来说,在处理单元上有了很大的提升。

3.2.4 NVidia Kepler架构

Kepler除了在硬件有了提升,有了更多处理单元之外,还将SM升级到了SMX。SMX是改进的架构,支持动态创建渲染线程(下图),以降低延迟。

3.2.5 NVidia Turing架构

上图是采纳了Turing架构的TU102 GPU,它的特点如下:
  • 6 GPC(图形处理簇)
  • 36 TPC(纹理处理簇)
  • 72 SM(流多处理器)
  • 每个GPC有6个TPC,每个TPC有2个SM
  • 4,608 CUDA核
  • 72 RT核
  • 576 Tensor核
  • 288 纹理单元
  • 12x32位 GDDR6内存控制器 (共384位)
单个SM的结构图如下:
每个SM包含:
  • 64 CUDA核
  • 8 Tensor核
  • 256 KB寄存器文件
TU102 GPU芯片实物图:

3.3 GPU架构的共性

纵观上一节的所有GPU架构,可以发现它们虽然有所差异,但存在着很多相同的概念和部件:
  • GPC
  • TPC
  • Thread
  • SM、SMX、SMM
  • Warp
  • SP
  • Core
  • ALU
  • FPU
  • SFU
  • ROP
  • Load/Store Unit
  • L1 Cache
  • L2 Cache
  • Memory
  • Register File
以上各个部件的用途将在下一章详细阐述。
GPU为什么会有这么多层级且有这么多雷同的部件?答案是GPU的任务是天然并行的,现代GPU的架构皆是以高度并行能力而设计的。
参考文献
  • Real-Time Rendering Resources
  • Life of a triangle - NVIDIA\\'s logical pipeline
  • NVIDIA Pascal Architecture Whitepaper
  • NVIDIA Turing Architecture Whitepaper
  • Pomegranate: A Fully Scalable Graphics Architecture
  • Performance Optimization Guidelines and the GPU Architecture behind them
  • A trip through the Graphics Pipeline 2011
  • Graphic Architecture introduction and analysis
  • Exploring the GPU Architecture
  • Introduction to GPU Architecture
  • An Introduction to Modern GPU Architecture
  • GPU TECHNOLOGY: PAST, PRESENT, FUTURE
  • GPU Computing & Architectures
  • NVIDIA VOLTA
  • NVIDIA TURING
  • Graphics processing unit
  • GPU并行架构及渲染优化
  • 渲染优化-从GPU的结构谈起
  • GPU Architecture and Models
  • Introduction to and History of GPU Algorithms
  • GPU Architecture Overview
  • 计算机那些事(8)——图形图像渲染原理
  • GPU Programming Guide GeForce 8 and 9 Series
  • GPU的工作原理
  • NVIDIA显示核心列表
  • DirectX
  • 高级着色器语言
  • 探究光线追踪技术及UE4的实现
  • 移动游戏性能优化通用技法
  • NV shader thread group
  • 实时渲染深入探究
  • NVIDIA GPU 硬件介绍
  • Data Transfer Matters for GPU Computing
  • Slang – A Shader Compilation System
  • Graphics Shaders - Theory and Practice 2nd Edition
博客地址:
  • https://www.cnblogs.com/timlly/p/11471507.html
下载链接:
NVIDIA GPU架构白皮书
1、NVIDIA A100 Tensor Core GPU技术白皮书
2、NVIDIA Kepler GK110-GK210架构白皮书
3、NVIDIA Kepler GK110-GK210架构白皮书
4、NVIDIA Kepler GK110架构白皮书
5、NVIDIA Tesla P100技术白皮书
6、NVIDIA Tesla V100 GPU架构白皮书
7、英伟达Turing GPU 架构白皮书
GPU技术专题下载链接
《GPU高性能计算概述》 
《GPU深度学习基础介绍》 
《OpenACC基本介绍》 
《CUDA CC 编程介绍》 
《CUDA Fortr基本介绍》
深度报告:GPU研究框架
CPU和GPU研究框架合集
国产FPGA研究框架
ASIC技术专题分析
《深入介绍FPGA》
《FPGA入门教程》
《异构计算芯片(ASIC/FPGA等)技术合集(1)》
1、FPGA入门教程.pdf
2、EDA技术与可编程AISC的设计实现.pdf
3、FPGA:芯片世界里,不走寻常路.PDF
4、FPGA基础知识.pdf
《异构计算芯片(ASIC/FPGA等)技术合集(2)》
1、赛灵思FPGA加速机器学习推理.pdf
2、Logos FPGA开发平台用户手册.pdf
3、Xilinx UltraScale业界首款ASIC级架构.pdf
4、先进封装技术:核电子学ASIC技术研讨会.pdf
5、高级ASIC芯片综合.pdf

本号资料全部上传至知识星球,更多内容请登录智能计算芯知识(知识星球)星球下载全部资料




免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言联系删除,谢谢。



电子书<服务器基础知识全解(终极版)>更新完毕,知识点深度讲解,提供182页完整版下载。

获取方式:点击“阅读原文”即可查看PPT可编辑版本和PDF阅读版本详情。


温馨提示:

请搜索“AI_Architect”或“扫码”关注公众号实时掌握深度技术分享,点击“阅读原文”获取更多原创技术干货。


智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 143浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 170浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 142浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 114浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 110浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 103浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 141浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 92浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 107浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 138浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 96浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 126浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦