深入GPU硬件架构及运行机制(上)

智能计算芯世界 2022-12-03 00:00

  • 一、导言
    • 1.1 为何要了解GPU?
    • 1.2 内容要点
    • 1.3 带着问题阅读
  • 二、GPU概述

    • 2.1 GPU是什么?

    • 2.2 GPU历史

      • 2.2.1 NV GPU发展史

      • 2.2.2 NV GPU架构发展史

    • 2.3 GPU的功能

  • 三、GPU物理架构

    • 3.1 GPU宏观物理结构

    • 3.2 GPU微观物理结构

      • 3.2.1 NVidia Tesla架构

      • 3.2.2 NVidia Fermi架构

      • 3.2.3 NVidia Maxwell架构

      • 3.2.4 NVidia Kepler架构

      • 3.2.5 NVidia Turing架构

    • 3.3 GPU架构的共性

  • 四、GPU运行机制

    • 4.1 GPU渲染总览

    • 4.2 GPU逻辑管线

    • 4.3 GPU技术要点

      • 4.3.1 SIMD和SIMT

      • 4.3.2 co-issue

      • 4.3.3 if - else语句

      • 4.3.4 Early-Z

      • 4.3.5 统一着色器架构(Unified shader Architecture)

      • 4.3.6 像素块(Pixel Quad)

    • 4.4 GPU资源机制

      • 4.4.1 内存架构

      • 4.4.2 GPU Context和延迟

      • 4.4.3 CPU-GPU异构系统

      • 4.4.4 GPU资源管理模型

      • 4.4.5 CPU-GPU数据流

      • 4.4.6 显像机制

    • 4.5 Shader运行机制

    • 4.6 利用扩展例证

  • 五、总结

    • 5.1 CPU vs GPU

    • 5.2 渲染优化建议

    • 5.3 GPU的未来

    • 5.4 结语

  • 参考文献

  • 特别说明

一、导言

对于大多数图形渲染开发者,GPU是既熟悉又陌生的部件,熟悉的是每天都需要跟它打交道,陌生的是GPU就如一个黑盒,不知道其内部硬件架构,更无从谈及其运行机制。
本文以NVIDIA作为主线,将试图全面且深入地剖析GPU的硬件架构及运行机制,主要涉及PC桌面级的GPU,不会覆盖移动端、专业计算、图形工作站级别的GPU。

下载链接:
NVIDIA GPU架构白皮书
1、NVIDIA A100 Tensor Core GPU技术白皮书
2、NVIDIA Kepler GK110-GK210架构白皮书
3、NVIDIA Kepler GK110-GK210架构白皮书
4、NVIDIA Kepler GK110架构白皮书
5、NVIDIA Tesla P100技术白皮书
6、NVIDIA Tesla V100 GPU架构白皮书
7、英伟达Turing GPU 架构白皮书

GPU技术专题下载链接
《GPU高性能计算概述》 
《GPU深度学习基础介绍》 
《OpenACC基本介绍》 
《CUDA CC 编程介绍》 
《CUDA Fortr基本介绍》
深度报告:GPU研究框架
CPU和GPU研究框架合集

1.1 为何要了解GPU?

了解GPU硬件架构和理解运行机制,好处多多,总结出来有:
  • 理解GPU其物理结构和运行机制,GPU由黑盒变白盒。
  • 更易找出渲染瓶颈,写出高效率shader代码。
  • 紧跟时代潮流,了解最前沿渲染技术!
  • 技多不压身!

1.2 内容要点

本文的内容要点提炼如下:
  • GPU简介、历史、特性。
  • GPU硬件架构。
  • GPU和CPU的协调调度机制。
  • GPU缓存结构。
  • GPU渲染管线。
  • GPU运行机制。
  • GPU优化技巧。

1.3 带着问题阅读

适当带着问题去阅读技术文章,通常能加深理解和记忆,阅读本文可带着以下问题:

1、GPU是如何与CPU协调工作的?

2、GPU也有缓存机制吗?有几层?它们的速度差异多少?

3、GPU的渲染流程有哪些阶段?它们的功能分别是什么?

4、Early-Z技术是什么?发生在哪个阶段?这个阶段还会发生什么?会产生什么问题?如何解决?

5、SIMD和SIMT是什么?它们的好处是什么?co-issue呢?

6、GPU是并行处理的么?若是,硬件层是如何设计和实现的?

7、GPC、TPC、SM是什么?Warp又是什么?它们和Core、Thread之间的关系如何?

8、顶点着色器(VS)和像素着色器(PS)可以是同一处理单元吗?为什么?

9、像素着色器(PS)的最小处理单位是1像素吗?为什么?会带来什么影响?

10、Shader中的if、for等语句会降低渲染效率吗?为什么?

11、如下图,渲染相同面积的图形,三角形数量少(左)的还是数量多(右)的效率更快?为什么?

12、GPU Context是什么?有什么作用?

13、造成渲染瓶颈的问题很可能有哪些?该如何避免或优化它们? 

二、GPU概述

2.1 GPU是什么?

GPU全称是Graphics Processing Unit,图形处理单元。它的功能最初与名字一致,是专门用于绘制图像和处理图元数据的特定芯片,后来渐渐加入了其它很多功能。
NVIDIA GPU芯片实物图
我们日常讨论GPU和显卡时,经常混为一谈,严格来说是有所区别的。GPU是显卡(Video card、Display card、Graphics card)最核心的部件,但除了GPU,显卡还有扇热器、通讯元件、与主板和显示器连接的各类插槽。
对于PC桌面,生产GPU的厂商主要有两家:
NVIDIA:英伟达,是当今首屈一指的图形渲染技术的引领者和GPU生产商佼佼者。NVIDIA的产品俗称N卡,代表产品有GeForce系列、GTX系列、RTX系列等。
AMD:既是CPU生产商,也是GPU生产商,它家的显卡俗称A卡。代表产品有Radeon系列。
当然,NVIDIA和AMD也都生产移动端、图形工作站类型的GPU。此外,生产移动端显卡的厂商还有ARM、Imagination Technology、高通等公司。

2.2 GPU历史

GPU自从上世纪90年代出现雏形以来,经过20多年的发展,已经发展成不仅仅是渲染图形这么简单,还包含了数学计算、物理模拟、AI运算等功能。

2.2.1 NV GPU发展史

以下是GPU发展节点表:
1995 – NV1
NV1的渲染画面及其特性。
1997 – Riva 128 (NV3), DX3
1998 – Riva TNT (NV4), DX5
  • 32位颜色, 24位Z缓存, 8位模板缓存

  • 双纹理, 双线性过滤

  • 每时钟2像素 (2 ppc)

1999 - GeForce 256(NV10)
固定管线,支持DirectX 7.0
硬件T&L(Transform & lighting,坐标变换和光照)
  • 立方体环境图(Cubemaps)

  • DOT3 – bump mapping

  • 2倍各向异性过滤

  • 三线性过滤

  • DXT纹理压缩

  • 4ppc


引入“GPU”术语
2001 - GeForce 3
NV20的渲染画面及其特性。
  • 顶点着色器

  • 像素着色器

  • DirectX 8.0

  • Shader Model 1.0

  • 可编程渲染管线

  • 3D纹理

  • 硬件阴影图

  • 8倍各向异性过滤

  • 多采样抗锯齿(MSAA)

  • 4 ppc


2003 - GeForce FX系列(NV3x)
  • HLSL
  • CGSL
    • GLSL
    • 256顶点操作指令
    • 512像素操作指令
    • 256顶点操作指令
    • 32纹理 + 64算术像素操作指令
    • DirectX 9.0
    • Shader Model 2.0
    • Shader Model 2.0a
    • 着色语言
NV30的渲染画面及其特性。
  • 2004 - GeForce 6系列 (NV4x)
    • 64位渲染纹理(Render Target)
    • FP16*4 纹理过滤和混合
    • 分支、循环、声明等
    • DirectX 9.0c
    • Shader Model 3.0
    • 动态流控制
    • 顶点纹理读取
    • 高动态范围(HDR)
NV40的渲染画面及其特性。
  • 2006 - GeForce 8系列 (G8x)
    NV G80的渲染画面及其特性。
    • 几何着色器(Geometry Shaders)
    • 没有上限位(No caps bits)
    • 统一的着色器(Unified Shaders)
    • DirectX 10.0
    • Shader Model 4.0
    • Vista系统全新驱动
    • 基于GPU计算的CUDA问世
    • GPU计算能力以GFLOPS计量。
  • 2010 - GeForce 405(GF119)
    • 更多指令、存储单元、寄存器
    • 面向对象着色语言
    • 曲面细分
    • 计算着色器
    • 曲面细分(Tessellation)
    • 计算着色器(Compute Shader)
    • 外壳着色器(Hull Shader)
    • 镶嵌单元(tessellator)
    • 域着色器(Domain Shader)
    • 支持Stream Output
    • 多线程支持
    • 改进的纹理压缩
    • DirectX 11.0
      DirectX 11的渲染管线。
    • Shader Model 5.0
  • 2014 - GeForceGT 710(GK208)
    • 轻量化驱动层
    • 硬件级多线程渲染支持
    • DirectX 12.0
    • 更完善的硬件资源管理
  • 2016 - GeForceGTX 1060 6GB
    支持RTX光线追踪的显卡列表。
    • 首次支持RTX和DXR技术,即支持光线追踪
    • 引入RT Core(光线追踪核心)
  • 2018 - TITAN RTX(TU102)
    • DirectX 12.1,OpenGL 4.5
    • 6GPC,36TPC,72SM,72RT Core,...
    • 8K分辨率,1770MHz主频,24G显存,384位带宽
从上面可以看出来,GPU硬件是伴随着图形API标准、游戏一起发展的,并且它们形成了相互相成、相互促进的良性关系。

2.2.2 NV GPU架构发展史

众所周知,CPU的发展符合摩尔定律:每18个月速度翻倍。
处理芯片晶体管数量符合摩尔定律,图右是摩尔本人,Intel的创始人
而NVIDIA创始人黄仁勋在很多年前曾信誓旦旦地说,GPU的速度和功能要超越摩尔定律,每6个月就翻一倍。NV的GPU发展史证明,他确实做到了!GPU的提速幅率远超CPU:
NVIDIA GPU架构历经多次变革,从起初的Tesla发展到最新的Turing架构,发展史可分为以下时间节点:
  • 2008 - Tesla
    Tesla最初是给计算处理单元使用的,应用于早期的CUDA系列显卡芯片中,并不是真正意义上的普通图形处理芯片。
  • 2010 - Fermi
    Fermi是第一个完整的GPU计算架构。首款可支持与共享存储结合纯cache层次的GPU架构,支持ECC的GPU架构。
  • 2012 - Kepler
    Kepler相较于Fermi更快,效率更高,性能更好。
  • 2014 - Maxwell
    其全新的立体像素全局光照 (VXGI) 技术首次让游戏 GPU 能够提供实时的动态全局光照效果。基于 Maxwell 架构的 GTX 980 和 970 GPU 采用了包括多帧采样抗锯齿 (MFAA)、动态超级分辨率 (DSR)、VR Direct 以及超节能设计在内的一系列新技术。
  • 2016 - Pascal
    Pascal 架构将处理器和数据集成在同一个程序包内,以实现更高的计算效率。1080系列、1060系列基于Pascal架构
  • 2017 - Volta
    Volta 配备640 个Tensor 核心,每秒可提供超过100 兆次浮点运算(TFLOPS) 的深度学习效能,比前一代的Pascal 架构快5 倍以上。
  • 2018 - Turing
    Turing 架构配备了名为 RT Core 的专用光线追踪处理器,能够以高达每秒 10 Giga Rays 的速度对光线和声音在 3D 环境中的传播进行加速计算。Turing 架构将实时光线追踪运算加速至上一代 NVIDIA Pascal™ 架构的 25 倍,并能以高出 CPU 30 多倍的速度进行电影效果的最终帧渲染。2060系列、2080系列显卡也是跳过了Volta直接选择了Turing架构。
下图是部分GPU架构的发展历程:

2.3 GPU的功能

现代GPU除了绘制图形外,还担当了很多额外的功能,综合起来如下几方面:
  • 图形绘制。
    这是GPU最传统的拿手好戏,也是最基础、最核心的功能。为大多数PC桌面、移动设备、图形工作站提供图形处理和绘制功能。
  • 物理模拟。
    GPU硬件集成的物理引擎(PhysX、Havok),为游戏、电影、教育、科学模拟等领域提供了成百上千倍性能的物理模拟,使得以前需要长时间计算的物理模拟得以实时呈现。
  • 海量计算。
    计算着色器及流输出的出现,为各种可以并行计算的海量需求得以实现,CUDA就是最好的例证。
  • AI运算。
    近年来,人工智能的崛起推动了GPU集成了AI Core运算单元,反哺AI运算能力的提升,给各行各业带来了计算能力的提升。
  • 其它计算。
    音视频编解码、加解密、科学计算、离线渲染等等都离不开现代GPU的并行计算能力和海量吞吐能力。

三、GPU物理架构

3.1 GPU宏观物理结构

由于纳米工艺的引入,GPU可以将数以亿记的晶体管和电子器件集成在一个小小的芯片内。从宏观物理结构上看,现代大多数桌面级GPU的大小跟数枚硬币同等大小,部分甚至比一枚硬币还小。
当GPU结合散热风扇、PCI插槽、HDMI接口等部件之后,就组成了显卡(下图)。
显卡不能独立工作,需要装载在主板上,结合CPU、内存、显存、显示器等硬件设备,组成完整的PC机。
搭载了显卡的主板。

3.2 GPU微观物理结构

GPU的微观结构因不同厂商、不同架构都会有所差异,但核心部件、概念、以及运行机制大同小异。下面将展示部分架构的GPU微观物理结构。

3.2.1 NVidia Tesla架构

Tesla微观架构总览图如上。下面将阐述它的特性和概念:
  • 拥有7组TPC(Texture/Processor Cluster,纹理处理簇)
  • 每个TPC有两组SM(Stream Multiprocessor,流多处理器)
  • 每个SM包含:
    • 6个SP(Streaming Processor,流处理器)
    • 2个SFU(Special Function Unit,特殊函数单元)
    • L1缓存、MT Issue(多线程指令获取)、C-Cache(常量缓存)、共享内存
  • 除了TPC核心单元,还有与显存、CPU、系统内存交互的各种部件。

3.2.2 NVidia Fermi架构

Fermi架构如上图,它的特性如下:
  • 拥有16个SM
  • 每个SM:
    • 2个Warp(线程束)
    • 两组共32个Core
    • 16组加载存储单元(LD/ST)
    • 4个特殊函数单元(SFU)
  • 每个Warp:
    • 16个Core
    • Warp编排器(Warp Scheduler)
    • 分发单元(Dispatch Unit)
  • 每个Core:
    • 1个FPU(浮点数单元)
    • 1个ALU(逻辑运算单元)

3.2.3 NVidia Maxwell架构

采用了Maxwell的GM204,拥有4个GPC,每个GPC有4个SM,对比Tesla架构来说,在处理单元上有了很大的提升。

3.2.4 NVidia Kepler架构

Kepler除了在硬件有了提升,有了更多处理单元之外,还将SM升级到了SMX。SMX是改进的架构,支持动态创建渲染线程(下图),以降低延迟。

3.2.5 NVidia Turing架构

上图是采纳了Turing架构的TU102 GPU,它的特点如下:
  • 6 GPC(图形处理簇)
  • 36 TPC(纹理处理簇)
  • 72 SM(流多处理器)
  • 每个GPC有6个TPC,每个TPC有2个SM
  • 4,608 CUDA核
  • 72 RT核
  • 576 Tensor核
  • 288 纹理单元
  • 12x32位 GDDR6内存控制器 (共384位)
单个SM的结构图如下:
每个SM包含:
  • 64 CUDA核
  • 8 Tensor核
  • 256 KB寄存器文件
TU102 GPU芯片实物图:

3.3 GPU架构的共性

纵观上一节的所有GPU架构,可以发现它们虽然有所差异,但存在着很多相同的概念和部件:
  • GPC
  • TPC
  • Thread
  • SM、SMX、SMM
  • Warp
  • SP
  • Core
  • ALU
  • FPU
  • SFU
  • ROP
  • Load/Store Unit
  • L1 Cache
  • L2 Cache
  • Memory
  • Register File
以上各个部件的用途将在下一章详细阐述。
GPU为什么会有这么多层级且有这么多雷同的部件?答案是GPU的任务是天然并行的,现代GPU的架构皆是以高度并行能力而设计的。
参考文献
  • Real-Time Rendering Resources
  • Life of a triangle - NVIDIA\\'s logical pipeline
  • NVIDIA Pascal Architecture Whitepaper
  • NVIDIA Turing Architecture Whitepaper
  • Pomegranate: A Fully Scalable Graphics Architecture
  • Performance Optimization Guidelines and the GPU Architecture behind them
  • A trip through the Graphics Pipeline 2011
  • Graphic Architecture introduction and analysis
  • Exploring the GPU Architecture
  • Introduction to GPU Architecture
  • An Introduction to Modern GPU Architecture
  • GPU TECHNOLOGY: PAST, PRESENT, FUTURE
  • GPU Computing & Architectures
  • NVIDIA VOLTA
  • NVIDIA TURING
  • Graphics processing unit
  • GPU并行架构及渲染优化
  • 渲染优化-从GPU的结构谈起
  • GPU Architecture and Models
  • Introduction to and History of GPU Algorithms
  • GPU Architecture Overview
  • 计算机那些事(8)——图形图像渲染原理
  • GPU Programming Guide GeForce 8 and 9 Series
  • GPU的工作原理
  • NVIDIA显示核心列表
  • DirectX
  • 高级着色器语言
  • 探究光线追踪技术及UE4的实现
  • 移动游戏性能优化通用技法
  • NV shader thread group
  • 实时渲染深入探究
  • NVIDIA GPU 硬件介绍
  • Data Transfer Matters for GPU Computing
  • Slang – A Shader Compilation System
  • Graphics Shaders - Theory and Practice 2nd Edition
博客地址:
  • https://www.cnblogs.com/timlly/p/11471507.html
下载链接:
NVIDIA GPU架构白皮书
1、NVIDIA A100 Tensor Core GPU技术白皮书
2、NVIDIA Kepler GK110-GK210架构白皮书
3、NVIDIA Kepler GK110-GK210架构白皮书
4、NVIDIA Kepler GK110架构白皮书
5、NVIDIA Tesla P100技术白皮书
6、NVIDIA Tesla V100 GPU架构白皮书
7、英伟达Turing GPU 架构白皮书
GPU技术专题下载链接
《GPU高性能计算概述》 
《GPU深度学习基础介绍》 
《OpenACC基本介绍》 
《CUDA CC 编程介绍》 
《CUDA Fortr基本介绍》
深度报告:GPU研究框架
CPU和GPU研究框架合集
国产FPGA研究框架
ASIC技术专题分析
《深入介绍FPGA》
《FPGA入门教程》
《异构计算芯片(ASIC/FPGA等)技术合集(1)》
1、FPGA入门教程.pdf
2、EDA技术与可编程AISC的设计实现.pdf
3、FPGA:芯片世界里,不走寻常路.PDF
4、FPGA基础知识.pdf
《异构计算芯片(ASIC/FPGA等)技术合集(2)》
1、赛灵思FPGA加速机器学习推理.pdf
2、Logos FPGA开发平台用户手册.pdf
3、Xilinx UltraScale业界首款ASIC级架构.pdf
4、先进封装技术:核电子学ASIC技术研讨会.pdf
5、高级ASIC芯片综合.pdf

本号资料全部上传至知识星球,更多内容请登录智能计算芯知识(知识星球)星球下载全部资料




免责申明:本号聚焦相关技术分享,内容观点不代表本号立场,可追溯内容均注明来源,发布文章若存在版权等问题,请留言联系删除,谢谢。



电子书<服务器基础知识全解(终极版)>更新完毕,知识点深度讲解,提供182页完整版下载。

获取方式:点击“阅读原文”即可查看PPT可编辑版本和PDF阅读版本详情。


温馨提示:

请搜索“AI_Architect”或“扫码”关注公众号实时掌握深度技术分享,点击“阅读原文”获取更多原创技术干货。


智能计算芯世界 聚焦人工智能、芯片设计、异构计算、高性能计算等领域专业知识分享.
评论 (0)
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 152浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 78浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 206浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 199浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 225浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 110浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 216浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 159浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 77浏览
  • REACH和RoHS欧盟两项重要的环保法规有什么区别?适用范围有哪些?如何办理?REACH和RoHS是欧盟两项重要的环保法规,主要区别如下:一、核心定义与目标RoHS全称为《关于限制在电子电器设备中使用某些有害成分的指令》,旨在限制电子电器产品中的铅(Pb)、汞(Hg)、镉(Cd)、六价铬(Cr6+)、多溴联苯(PBBs)和多溴二苯醚(PBDEs)共6种物质,通过限制特定材料使用保障健康和环境安全REACH全称为《化学品的注册、评估、授权和限制》,覆盖欧盟市场所有化学品(食品和药品除外),通过登
    张工13144450251 2025-03-31 21:18 151浏览
  •        在“软件定义汽车”的时代浪潮下,车载软件的重要性日益凸显,软件在整车成本中的比重逐步攀升,已成为汽车智能化、网联化、电动化发展的核心驱动力。车载软件的质量直接关系到车辆的安全性、可靠性以及用户体验,因此,构建一套科学、严谨、高效的车载软件研发流程,确保软件质量的稳定性和可控性,已成为行业共识和迫切需求。       作为汽车电子系统领域的杰出企业,经纬恒润深刻理解车载软件研发的复杂性和挑战性,致力于为O
    经纬恒润 2025-03-31 16:48 95浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 136浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 208浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 169浏览
我要评论
0
1
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦