1纳米将成为硅基半导体工艺的终点?

全芯时代 2022-11-30 08:28

1纳米芯片代表什么?这可不是一个简单数字,其背后可能代表着硅基半导体的终结。


不过,尽管芯片缩微化技术挑战越来越大,但先进芯片工艺的探索却从未停止,即使1纳米这样已接近物理极限的芯片工艺,也被产业界、学术界不时曝出一些新进展。近日,财联社、台湾经济日报就曝出,台积电计划在桃园龙潭建设1纳米芯片工厂。


据悉,三星曾宣布2027年量产1.4nm工艺,台积电也预计也是在2027年左右。不过,此次台积电再次挑战1纳米,可以说是摩尔定律物理极限的工艺节点。如果台积电决定新建1纳米芯片工厂,那么也代表其已经开始为1nm做规划,且可能有相关技术突破。



ASML称能保障1nm工艺实现


大家都知道,高端芯片的生产离不开先进的光刻机。而1nm芯片要实现真正量产不仅还需要很长时间,而且还将依赖关键设备,即下一代EUV光刻机。
据悉,下一代EUV光刻机必须要升级下一代的高NA(数值孔径)标准,从现在的0.33 NA提升到0.55 NA,更高的NA意味着更分辨率更高,是3nm之后的工艺必备的条件。

不过,对于下一代EUV光刻机的供应,全球光刻机巨头ASML持乐观态度。按照ASML的计划,下一代EUV光刻机的试验型号最快2023年就开始出货,2025年后达到正式量产能力,不过价格也不菲,售价将达到4亿美元以上。

今年5月,ASML也曾发表文章称,现有技术可以实现 1nm 工艺,摩尔定律可继续生效十年甚至更长时间。

根据摩尔定律,每隔 18-24个月,封装在微芯片上的晶体管数量便会增加一倍,芯片的性能也会随之翻一番。不过,增加芯片面积、缩小元件尺寸以及优化器件电路设计是实现晶体管数量翻倍的三个重要因素。

对此,ASML表示,在过去的15年里,很多创新方法使摩尔定律依然生效且状况良好。从整个行业的发展路线来看,它们将在未来十年甚至更长时间内让摩尔定律继续保持这种势头。

同时,ASML也指出,在元件方面,目前的技术创新足够将芯片的制程推进至至少1纳米节点,其中包括gate-all-around FETs,nanosheet FETs,forksheet FETs,以及 complementary FETs等诸多前瞻技术。此外,光刻系统分辨率的改进(预计每 6 年左右缩小 2 倍)和边缘放置误差(EPE)对精度的衡量也将进一步推动芯片尺寸缩小的实现。

ASML还表示,其EPE路线图是全方位光刻技术的关键,将通过不断改建光刻系统和发展应用产品(包括量测和检测系统)来实现。

从ASML的表态来看,芯片缩微化仍然有技术发展空间,至少在光刻机设备上将有很好保障,加上通过不断挖掘新工艺、新技术,探索新方向,1纳米芯片工艺未必不可能。


挑战1纳米半导体材料——半金属铋


当然,除了关键设备光刻机之外,要想实现1纳米芯片还远远不够,还需从材料上寻求更大的突破。
这里也特别提一下2021年一项学术界的研究成果:半金属铋(Bi)。针对硅材料达到物理极限的科学界难题,麻省理工学院(MIT)的孔静教授领导的一支国际联合攻关团队成功攻克了半导体领域的二维材料的连接难题,研发出半导体新材料——半金属铋(Bi)。这项成果直接将使晶圆的先进制程从纳米级微观进入到原子级。

一直以来,尽管科学界对二维材料寄予厚望,却苦于无法解决二维材料高电阻、低电流等问题,但使用原子级薄材料铋(Bi)代替硅,有效地将这些2D材料连接到其他芯片元件,开启了一个新的研究方向。

据悉,这项研究是MIT、台大、台积电共同合力的成果。自2019年,这三个机构便展开了长达1年半的跨国合作。这个重大突破先由孔静教授领导的MIT团队发现在二维材料上搭配半金属铋(Bi)的电极,能大幅降低电阻并提高传输电流。台积电技术研究部门则将铋(Bi)沉积制程进行优化。最后,台大团队运用氦离子束微影系统将元件通道成功缩小至纳米尺寸,终于获得突破性的研究成果。

由此可见,未来,原子级薄材料将是硅基晶体管的一种有前途的替代品。

目前,1nm工艺节点仍处于探索阶段,而全球的产学研各界都在进行着相关工艺和材料的研究。比如,IBM和三星就曾公布一种在芯片上垂直堆叠晶体管的新设计,被称为垂直传输场效应晶体管,也是可能突破1nm制程工艺瓶颈的技术路线。

因此,尽管半金属铋(Bi)是其中一个技术选项,但也不能保证台积电未来量产时确定使用半金属铋,不过这也证明台积电也很早就在1纳米芯片工艺上进行了技术布局,而半金属铋(Bi)对芯片工艺缩微化具有十分重要的意义。


1纳米以下该怎么办?


如果芯片工艺进入1纳米以下,量子隧穿效应大增,将形成“电子失控”,使芯片失效。这种情况下,我们该如何实现?
比利时微电子研究中心(IMEC)就曾表示,搭配全新技术,“摩尔定律要前进多少个世代都不是问题。”该机构还表示,1nm制程2027年就可实现商业化,之后的0.7nm预计将在2029年后实现量产。这一预测似乎还比台积电、三星的预测更为乐观。

据悉,IMEC已经与ASML在下一代EUV设备研发工作展开深度合作,日本半导体设备厂商东京电子也参与其中。此外,IMEC还开发了一种新方法,可以在采用1nm制程工艺技术构建的芯片中使用金属互连来减轻焦耳热效应。

对于1纳米以下工艺,在2019年的Hotchips会议上,台积电研发负责人、技术研究副总经理黄汉森(Philip Wong)曾在演讲中就谈到过半导体工艺极限的问题,且认为到了2050年,晶体管来到氢原子尺度,即0.1nm。关于未来的技术路线,黄汉森认为像碳纳米管(1.2nm尺度)、二维层状材料等可以将晶体管变得更快、更迷你;同时,相变内存(PRAM)、旋转力矩转移随机存取内存(STT-RAM)等会直接和处理器封装在一起,缩小体积,加快数据传递速度;此外还有3D堆叠封装技术。

这里还特别提一下湖南大学团队在2021年取得的一个创新研究成果。该团队实现了超短沟道的垂直场效应晶体管(VFET),沟道长度可以缩短到0.65nm,意味着芯片工艺,可以进入到1nm级别,其研究的论文还登上了《Nature Electronics》。

当然,无论是1纳米,还是1纳米以下芯片工艺,都还停留在技术验证阶段,甚至还处在实验室阶段,离真正商业化量产还有很长的距离,但毫无疑问这些前瞻性的研究都在为1纳米及以下工艺带来了更多的希望和可能。也许,很多人对1纳米及以下芯片持怀疑态度,甚至称“战略性吹牛”,但毫无疑问,从技术性原理到实际量产生产还有足够的时间去验证和实践。

全芯时代 全芯时代,专注服务半导体产业。发掘行业芯闻,解读行业现象,分享行业活动,讲述行业故事。做您身边的半导体资源库。
评论
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 70浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 167浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 51浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 70浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 37浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 102浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 168浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 86浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 41浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 98浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 66浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 65浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 106浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 83浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦