数字电路之MOS设计

一点电子 2022-11-28 14:30
点击👆一点电子👇关注我,右上角“...设为 星标★技术干货第一时间送达!

1、MOS的基本性质

 MOS,即场效应管,四端器件,S、D、G、B四个端口可以实现开和关的逻辑状态,进而实现基本的逻辑门。NMOS和PMOS具有明显的对偶特性:NMOS高电平打开(默认为增强型,使用的是硅栅自对准工艺,耗尽型器件这里不涉及),PMOS低电平打开。在忽略方向的情况下,采用共S极接法,有如下特性:

第一张图是Vds随Vgs变化的情况,用于描述开关特性。后面的逻辑分析一般基于这个原理。

第二张图是Ids随Vds变化的情况的简图,用于描述MOS的静态特性。

MOS的静态特性由两个区域决定:线性区和饱和区。

前者一般是动态功耗的主要原因,后者是静态电压摆幅的决定因素。

线性区有:Id=μCoxW/L[(Vgs-Vth)Vds-1/2Vds^2]

饱和区有:Id=1/2μCoxW/L(Vgs-Vth)^2

后面的MOS器件一般基于这两个区域的电学特性来分析总体的电学特性。电压摆幅、面积、噪声容限、功耗、延时基本上都是源自这个区域的原理。


2、CMOS电路及其改进

(1)最基本的CMOS电路--反相器

这里是反相器的版图草图及电路草图,用于描述反相器的版图位置和逻辑关系。

反相器的功能很简单,就是将Vout输出为Vin的反向。

从功耗上看:PMOS和NMOS静态不存在同时导通,即无静态功耗。由于NMOS和PMOS关断的延时,存在动态功耗。

从电压摆幅上看:NMOS可以将Vout拉到L0(逻辑0),PMOS可以将Vout拉到L1,可以保证全电压摆幅。

从面积上看:PMOS和NMOS各一个,标准的CMOS面积,其他电路的面积以其为参考。

从噪声容限上看:CMOS的标准噪声容限,以其为参考对比其他电路。

从延时看:取决于MOS管的工艺,也是其他电路延时的参考。

小知识:噪声容限的定义

图中g代表斜率,两个噪声容限在对称情况下一般相等,有些特殊的设计需要不对称的噪声容限。可以看到,噪声容限越大,反相器变化越快,响应速度越快。

(2)与门和或门的CMOS实现

使用CMOS实现逻辑,需要的理解上拉网络和下拉网络:

上拉网络:标准CMOS中采用PMOS组成上拉网络,负责实现L1的电压。

下拉网络:标准CMOS中采用NMOS组成下拉网络,负责实现L0的电压。

CMOS中,通过上拉网络和下拉网络的互斥来保证静态下无直通电流,即上拉网络和下拉网络的导通状态总是相反。这意味着上拉网络和下拉网络存在对偶关系---串联对并联。

再关注一个网络的导通关系:

串联的NMOS需要两个输入均为L1,输出才能完成下拉L0,即Y=AB,不完全与逻辑。

并联的PMOS需要两个输入均为L0,输出才能不完成下拉L0,即Y=A+B,不完全或逻辑。

所以,CMOS的与逻辑和或逻辑如下:

由于以NMOS为串并联参考,所以构建的逻辑需要取非。

这个相对于反相器而言,主要是拓展了N网络和P网络,这是后面改进及CMOS与其他电路组合的基础。

由于篇幅问题,这里不再详细描述该电路的特性,只是补充一下扇入和延时之间的关系。

以与非门为例:

A连的MOS(暂称MA)的有源区S不是接地,即Vs被抬高(在Vb=0)。Vth将会随之变高,导致导通所需时间增加,增加延时。这就是扇入为2的状态。一般来说,扇入不宜超过4,否则延时会快速增加。

(3)CMOS改进

CMOS的改进方针就是减少或去除PMOS,主要的思路如下:

1️⃣使用电阻(或者类似电阻功能的器件如恒通MOS管)替代PMOS。问题:下拉时为有比电路,需要设计管子尺寸以保证达到L0的电压要求。

2️⃣使用差分信号驱动NMOS代替PMOS。问题:会多一组反相器和与原来PMOS相当的NMOS。

3️⃣使用DCVSL结构实现CMOS。动态过程中为有比电路,需要设计PMOS的尺寸。

前面两种比较好理解,就不过多说明了,主要关注第三种结构DCVSL的实现原理。

DCVSL,全名差分级联电压开关逻辑,用两个PMOS和两个对偶的互斥输入的NMOS实现逻辑功能,具有使用少量PMOS的优点,支持差分输出。

这就是DCVSL的结构,下面的两个N网络输出为互斥的信号,通过上面两个PMOS的加强实现输出的稳定。基本原理是下面两个N网络总会有一个导通,输出L0,L0使得上面两个PMOS中一个导通,抬高另外一个PMOS的输入使其关闭,实现信号的稳定。实现稳态的过程为有比电路,存在稳定延时。

这个电路与直接使用差分信号输入一个上拉网络为NMOS的结构的区别(也就是第二种思路)的区别在于无需承受上拉NMOS带来的电压摆幅的损失。


3、TG及其改进

(1)传输管逻辑

传输管和传输门的区别在于否是有全电压摆幅,其实现的逻辑功能是一致的。

可以看到,传输管实现逻辑的关系还是串联和并联,并且串联为与,并联为或,需要使用保护电路防止悬空。输出的逻辑与输入的信号有关,这可以作为可编程的电路的单元。

(2)TG逻辑的改进

TG逻辑的改进还是专注于去除PMOS。根据反向输入的NMOS等于PMOS的思路,如上图3中的结构,可以将PMOS替代。可以看到的传输管不能无损传输,信号需要使用反相器恢复稳定。


4、动态电路

静态电路需要保持上拉和下拉电路一直互斥,存在动态损耗。

动态电路的思路则是使用时钟信号保证上下电路互斥,这样只需要一个网络就可以实现目标功能。图中是下拉N网络的电路,还可以使用上拉P网络实现,两者的级联要求正好对偶,可以间隔连接。这就是动态电路的级联的形式一PN连接。还有一种方式就是使用多米诺电路,就是在同N或者同P之间使用反相器保证动态电路预充正确。

接下来说明动态电路的工作方式:

预充-求值

在CLK=0时,P导通,输出预充到1;

在CLK=1时,N导通,读取N网络的导通状态,决定求值为0或者1;

一次预充求值完成后即实现逻辑输出。

问题:求值时输入不能发生改变,否则会出现逻辑x,这意味着动态电路多与时序电路联合使用,构成流水线。

问题:电容存储电荷实现电平存在损耗,需要CLK不断刷新。

动态电路的优化:

第一级动态电路CLK需要P和N两个MOS管,对于第二级动态电路,预充时已知某个信号为0(多米诺为0,PN连接为1),如果输入逻辑为与或者可以保证网络关闭,则可以节约一个网络控制MOS管。


5、组合逻辑分析

(1)电压摆幅

电平需要能够维持在L1和L0两个状态区间内,一旦混乱,就会出现逻辑错误。一般来说,可以使用电平恢复电路维持电压(一个反相器与PMOS构成的电平恢复)。对于长的逻辑链,需要加入BUFF来维持电压(这点在传输管中尤为重要)。

(2)逻辑延时

这部分是分析组合电路的延时的,采用的反相器为标准的估算方法(软件可以实测,但是设计时需要估值),专业词汇叫逻辑努力。

标准反相器链的延时T=tp0+tp0*f,其中tp0是空载延时,f是扇出。f=Cout/Cin,在同尺寸的反相器串联时,f=1,并联时f=N,N为下一级并联的个数。常用术语FO4即是扇出为4的设计。对于不同的

反相器,则需要使用具体的计算得到比例。反相器链采用f=F^(1/N)的优化规则优化。

基于反相器链,可以推导CMOS门链的延时:

反相器常用P:N的W/L为2:1(综合面积,速度,噪声,功耗的考虑值),以此为基准可以推出同等最优尺寸的与非门尺寸为2:2:2:2,或非门尺寸为4:4:1:1,推算原则就是串联翻倍,并联不变的最优尺寸等效规则。

然后是CMOS门的延时:d=p+gh,p为基准延时tp0的倍数,g为电学努力,h为逻辑努力。

以与非门为例,得出下面的参数:

p=2(等效两个理想反相器),g=4/3(A=2+2,B=2+2),h=Cout/Cin(单链,如果有分支,加上b这个参数,即下一级的负载数)。

优化的方法也是一样的,使得f=F^(1/N),即可实现最优延时。f=gh,F=GBH,大写即为连乘的小写。


6、锁存器

限于篇幅,这里不再再画图,大致解释一下锁存器的结构:

类似一个时钟控制开关(一般使用传输门作为开关),时钟打开开关时读取数据,关闭时锁存数据。通过时钟信号实现输出数据在一段时间内(理想情况下为半个周期)与输入隔离。


7、触发器

由两个锁存器和中间一个存储单元(一般是首尾相连的反相器)组成。锁存器的锁存时间相反,输入端锁存器打开时存入数据,锁存时读出数据。与锁存器整个时钟周期都在锁存依靠电平不同,触发器依靠时钟的上升和下降实现数据的存储,且输出整个时钟周期不发生改变。


8、时序逻辑分析

建立时间:数据需要提前于时钟沿的时间,

保持时间:数据需要在时钟沿到来后保持的时间。

传输时间:数据从存储单元传输到输出所需的时间。

具体的分析是复杂的,但是基本的原理是清晰的。建立时间是为了保证数据能够存入存储单元。保持时间是保证数据能度过时钟触发所需的延时。传输时间是保证存储单元数据能够传输到输出。

具体的时序分析是很复杂的,需要考虑许多参数,如时钟的抖动和歪斜。一般这些参数都是计算好的,使用者只需根据计算值设计相应的满足条件即可。基本的修改方法是:

对于关键路径,建立时间不足降低时钟频率,保持时间不足加BUFF。

至于如何修改建立时间和保持时间,那是电路结构的问题,需要设计更加合理的电路。常用的电路结构为C^2MOS结构,即将时钟和反相器组合成的MOS时序电路,有兴趣可以查一下。这个结构可以和多米诺组成流水线的结构。


9、功能模块

加法器、乘法器、多路选择器、移位寄存器、存储器等具有特定逻辑功能的电路所需的是逻辑设计,学习过数字电路的都不会陌生(存储器就是基于存储单元的读写DRAM和基于电容的SRAM),这里已经到了module层次了。这个层次的设计已经可以使用verilog快捷的实现了。优化也可以基于verilog来调试优化每个门的位置和数量。


10、总结

本文从MOS管开始,基本详细地介绍了CMOS的原理,传输管TG的原理、动态电路的结构、组合逻辑延时的分析,简略地介绍了锁存器、触发器及时序电路的分析,联系到了模块层次的数字电路设计,粗浅地介绍了数字电路设计的各个层次,为以后提高数字电路设计能力打下了一定的基础。

—— End ——
本号对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。

👇点击关注,技术干货准时送达!👇

    

#推荐阅读#

  • 硬件设计基础60问

  • 一位老电子工程师的十年职场感悟

  • 开关电源设计资料大全(建议收藏)

  • 大牛多年研发电源问题汇总(受益匪浅)

你若喜欢,点个“赞”“在看”

一点电子 一点电子,专注于电子硬件技术的学习和分享。分享技术,生活乐趣、职场百态,每天进步一点点!
评论 (0)
  • 飞凌嵌入式作为龙芯合作伙伴,隆重推出FET-2K0300i-S全国产自主可控工业级核心板!FET-2K0300i-S核心板基于龙芯2K0300i工业级处理器开发设计,集成1个64位LA264处理器,主频1GHz,提供高效的计算能力;支持硬件ECC;2K0300i还具备丰富的连接接口USB、SDIO、UART、SPI、CAN-FD、Ethernet、ADC等一应俱全,龙芯2K0300i支持四路CAN-FD接口,具备良好的可靠性、实时性和灵活性,可满足用户多路CAN需求。除性价比超高的国产处理器外,
    飞凌嵌入式 2025-05-07 11:54 65浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 276浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 296浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 282浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 424浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 527浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 350浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 188浏览
  • 硅二极管温度传感器是一种基于硅半导体材料特性的测温装置,其核心原理是利用硅二极管的电学参数(如正向压降或电阻)随温度变化的特性实现温度检测。以下是其工作原理、技术特点及典型应用:一、工作原理1、‌PN结温度特性‌硅二极管由PN结构成,当温度变化时,其正向电压 VF与温度呈线性负相关关系。例如,温度每升高1℃,VF约下降2 mV。2、‌电压—温度关系‌通过jing确测量正向电压的微小变化,可推算出环境温度值。部分型号(如SI410)在宽温域内(如1.4 K至475 K)仍能保持高线性度。
    锦正茂科技 2025-05-09 13:52 115浏览
  • 温度传感器的工作原理依据其类型可分为以下几种主要形式:一、热电阻温度传感器利用金属或半导体材料的电阻值随温度变化的特性实现测温:l ‌金属热电阻‌(如铂电阻 Pt100、Pt1000):高温下电阻值呈线性增长,稳定性高,适用于工业精密测温。l ‌热敏电阻‌(NTC/PTC):NTC 热敏电阻阻值随温度升高而下降,PTC 则相反;灵敏度高但线性范围较窄,常用于电子设备温控。二、热电偶传感器基于‌塞贝克效应‌(Seebeck effect):两种不同
    锦正茂科技 2025-05-09 13:31 106浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦