能够“听”到自己声音的无线电

云脑智库 2022-11-28 00:00

来源:悦智网


无线通信并不能实现无处不在的覆盖。我们都遇到过这种情形:电话中断,网页有时需要很长的时间来加载。在无线覆盖区内之所以会出现这样的“漏洞”,最根本的原因是现在绝大多数无线网络的配置为星型网络,也就是在中心位置有一个基础设施,比如手机信号塔或路由器,它与周围呈放射状分布的所有移动设备进行通信。

要实现无线通信的完全覆盖,需要用另一种不同类型的网络——网状网络来增强这些星型网络。与星型网络不同,网状网络由节点组成,节点之间以及节点与最终用户设备之间可以相互通信。有了这样一个系统,我们可以简单地添加一个节点进而绕过障碍物传输信号,填补无线网络覆盖的“漏洞”。例如,在信号接收不良的建筑物中,安装与主路由器通信的节点,可以增强Wi-Fi信号。
然而,当前的无线网状网设计有所限制。到目前为止,最大的限制是网状网络中的节点如果使用相同的频率来发送和接收信号,在中继数据时会对自身造成干扰。因此,目前的设计是用不同的频段发送和接收信号。但是,频谱是一种稀缺资源,对蜂窝网络和Wi-Fi所使用的繁忙频率来说尤其如此。当手机信号塔和Wi-Fi路由器大部分时间能够很好地为人们提供连接时,很难评价投入如此多的频谱来填补覆盖漏洞的合理性。
不过,一项突破可将网状网络应用到需求最大、频谱最密集的网络之中,例如连接组装车间的机器人、自动驾驶汽车或无人机群。这种新兴的突破性技术被称为自干扰消除(SIC)。顾名思义,自干扰消除使网状网络节点能够抵消在相同频率上发射和接收信号时所产生的干扰。发射和接收不需要单独的频率,这项技术将节点的频谱效率提高了一倍。
现在世界上有数百亿台无线设备。据全球移动通信系统协会(GSMA)统计,其中至少有50亿部是手机。Wi-Fi联盟的报告显示,目前使用的Wi-Fi设备超过130亿台。蓝牙技术联盟预测,2020年至2024年,蓝牙设备的出货量将超过75亿台。现在是无线网状网络成为主流的时候了,因为越来越多的产品内置了无线功能,比如浴室秤、网球鞋、压力锅以及数不胜数的其他产品。消费者期望它们在任何地方都能工作,自干扰消除将建立没有漏洞的健壮网状网络,使这个愿望成为可能。最重要的是,也许只需要使用少量的频谱,就可以做到这一点。

手机、Wi-Fi路由器和其他双向无线电被认为是全双工无线电。这意味着它们通常使用独立的发射器和接收器,能够同时发送和接收信号。一般来说,无线电发射和接收信号采用频分双工(使用两个不同的频率发射和接收信号)或时分双工(使用相同的频率但在不同的时间发射和接收信号)技术。这两种双工技术的缺点是,理论上每个频段在任何特定的时间都只使用其一半的潜力,换句话说,要么发送要么接收,而不是两者都进行。

长期以来,在同一频率上实现全双工,即在同一频段上同时发送和接收信号,最大限度地利用频谱,一直是无线电工程师们的目标。我们可以把其他全双工方法想象成一条双车道公路,车辆在不同的车道上朝不同的方向行驶;而同一频率上的全双工则只建一条车道,汽车同时朝两个方向行驶。这对于交通来说或许是荒谬的,但是对于无线电工程来说却是完全可能的。

需要明确的是,在同一频率上实现全双工仍然是无线通信工程师们努力的目标。自干扰消除使无线设备更接近这一目标,它使无线设备能够抵消自己的传输,同时听到同一频率上的其他信号,但这并不是一项完善的技术。
自干扰消除刚刚开始成为主流应用。在美国,至少有3家初创公司在现实世界应用自干扰消除,即GenXComm、Lextrum和Kumu网络公司(我在Kumu网络担任产品管理副总裁)。哥伦比亚大学、斯坦福大学(Kumu网络就是在这里起步的)和得克萨斯大学奥斯汀分校等学校也有一些开发自干扰消除技术的实质性项目。
乍一想,自干扰消除可能很简单。毕竟,在信号发送之前,发射无线设备已确切地知道自己发射了什么样的信号。然后,发射无线设备所要做的就是在天线接收的混合信号中抵消自己的发射信号,以便听到其他无线设备的信号,是这样吗?
而实际上,自干扰消除要更加复杂一些,因为无线设备信号在传输之前必须经过的几个步骤会影响传输的信号。智能手机等现代无线设备是从软件传输的数字信号开始的。然而,在将数字信号转换为用于传输的射频信号的过程中,无线设备模拟电路产生的噪声导致射频信号失真,因此它不可能使用一模一样的信号来实现自消除。这种噪声很难预测,因为部分噪声是由环境温度和细微的制造缺陷造成的。

产生干扰的发射信号功率与期望接收的信号功率的量级差异也会影响自干扰消除的效果。无线设备放大器发射的功率比接收信号的功率要高许多数量级。这就好像你在试图听清几英尺外的人对你耳语,而同时你却在对他们大声吼叫一样。

此外,到达接收天线的信号与无线设备发送时的信号不完全相同。当它返回时,信号还包括附近树木、墙壁、建筑物或无线设备附近其他物体的反射信号。当信号从移动的物体(如人、车辆甚至暴雨)上反射时,情况会变得更加复杂。这意味着,如果无线设备只是按照信号发送时的样子来抵消发射信号,将无法抵消这些反射。
因此,要想有良好的消除效果,自干扰消除技术需要结合算法和模拟技巧,解释由无线电器件及其本地环境产生的信号变化。回想一下,我们的目标是创建一个与发射信号相反的信号,在与原始接收信号结合时,这种反向信号应完全抵消原始发射信号,即使有附加的噪声、失真和反射,也只留下接收信号。然而实际上,要衡量抵消技术是否成功,看的仍然是能抵消多少信号。
Kumu的自干扰消除技术试图在无线设备接收信号的3个不同时间点抵消发射信号。通过这种三级方法,Kumu的技术可以消除大约110分贝,而一般的网状Wi-Fi接入点只能消除20到25分贝。
第一步在模拟世界的射频(RF)级进行。无线设备一个的自干扰消除专用组件在发射信号到达天线之前对其进行采样。此时,无线设备已经完成对信号的调制和放大。这意味着,任何由无线设备自身的信号混合器、功率放大器和其他组件引起的不规则性都已经存在于样本中,因此可以通过简单地反转所采集的样本信号,并将其馈送到无线设备接收器来实现抵消。
下一步依然在模拟区域进行,目的是在中频(IF)级抵消更多的发射信号。中频,顾名思义,是无线设备在数字信号和实际发射信号之间的中间一步。中频通常用于降低无线设备的成本和复杂性。使用中频,无线设备可以重复使用滤波器之类的组件,而不是每个可能的工作频段和信道都用单独的滤波器。例如,Wi-Fi路由器和手机为了重复使用组件,都首先将数字信号转换为中频,仅在后面的过程中,再最终将信号转换为发射频率。
Kumu自干扰消除技术的中频消除方式与射频消除方式相同。在将中频信号转换为发射频率、进行调制和放大之前,发射器中的自干扰消除组件会对它进行采样。该信号被反转方向,应用于转换为中频之后的接收信号。这个过程中,Kumu自干扰消除技术有一个很有意思的特点,即采样步骤和消除步骤的过程是相反的。换言之,在发射器中自干扰消除组件先取样中频信号再取样射频信号,但在消除步骤中,该组件先抵消射频信号,再抵消中频信号。
Kumu消除过程的第三步,亦即最后一步,是对被转换成数字形式的接收信号应用一种算法。该算法将剩余的接收信号与进行中频和射频转换之前的原始发射信号进行比较。该算法实质上是梳理接收信号,找出可能由发射器件或附近环境反射而引起的残留影响,并将其消除。
没有哪一个步骤是100%有效的。但这些步骤合在一起,就可以抵消足够多的发射信号,进而能够在同一频率上接收到其他强度适当的信号。对于许多重要的应用,例如前面描述的Wi-Fi中继器,这种消除已经足够了。

正如我之前提到的,工程师们还没有完全实现同一频率上的全双工无线通信。目前,自干扰消除正被部署在发射器和接收器彼此靠近的应用里,在同一物理机箱中,但不共享同一天线。让我们来看几个重要的例子。

Kumu的技术已经在4G网络中进行了商业化部署。借助自干扰消除,一种被称为中继节点的设备可以填补覆盖漏洞。中继节点本质上是一对背靠背连接的双向无线设备。这对无线设备中的第一个无线设备面向4G信号塔,接收来自网络的信号;第二个无线设备面向覆盖漏洞,在同一个频率上将信号传递给覆盖漏洞中的用户。该节点还接收来自覆盖漏洞中用户的信号,并在同一个频率上再次将其中继到信号塔。中继节点类似于传统的中继器和扩展器,通过中继来自远方的广播信号来扩展覆盖区域。不同的是,中继节点不会放大噪声,因为它们的工作是解码和重新生成原始信号,而不仅仅是放大信号。

由于中继节点完全用于重新发送信号,为了使该节点正常工作,面向4G信号塔的发射器不得干扰面向覆盖漏洞的接收器。复用频谱存在的一个大问题是发射信号的“声音”比接收信号的“声音”大几个数量级。你不希望节点中继用户的信号被自己重新发送的信号淹没,同样也不希望面向覆盖漏洞的发射器淹没来自信号塔的信号。自干扰消除技术通过抵消自己的发射信号,来防止一个无线设备的发射信号淹没另一个无线设备正在接收的信号。

正在进行的5G网络部署为自干扰消除提供了更好的机会。5G与前几代蜂窝网络技术不同,它包含了小型基站,即相距100到200米的微型信号塔。5G网络需要小型基站,因为这一代蜂窝技术采用了更高频率的毫米波信号,毫米波信号的传播距离没有其他蜂窝频率的传输距离远。小基站论坛(Small Cell Forum)预测,到2025年,全球将安装超过1300万个5G小型基站。每一个小型基站都需要一条专用链路,被称为“回程链路”,与网络的其余部分相连。绝大部分回程链路将采用无线形式,因为用光缆替代它的成本更高。事实上,为了开发更健壮、更高效的无线回程链路,5G行业正在开发一套被称为“综合接入和回程”(IAB)的标准。
就像它的名字一样,IAB包括两部分。首先是接入,智能手机等本地设备能够与最近的小型基站通信;其次是回程,小型基站能够与网络其他部分通信。5G IAB的第一个建议方案是在同一高速信道上轮流进行接入和回程通信,另一个方案是两组通信分别使用单独的信道。两个方案都有重大缺点。共享同一信道的问题是带来时间延迟,影响时延敏感的应用,如虚拟现实和多人游戏。另一方面,使用单独的信道会产生很高的成本:你已经将价格昂贵、需要为该网络获得许可的无线频谱的数量增加了一倍。在这两种情况下,你都没有最高效地利用无线容量。
如长期演进中继节点示例所示,自干扰消除可以在回程无线设备的接收器上抵消来自同一小型基站的接入无线设备发射的信号,同样,也可以在接入无线设备的接收器上抵消来自同一个小型基站的回程无线设备发射的信号。最终的结果是,即使小型基站的接入无线设备正在与附近的设备通话,该基站的回程无线设备仍然可以接收来自更广泛的网络的信号。
Kumu的技术还没有在使用IAB的5G网络中进行商业部署,因为IAB还是一项相当新的技术。制定移动通信协议的第三代合作伙伴计划(3GPP)于2020年6月冻结了第一轮IAB标准,此后,Kumu一直在通过行业试验完善其技术。

最后值得一提的技术是Wi-Fi,它开始更多地使用网状网络。例如,家庭Wi-Fi网络现在需要连接个人电脑、电视、网络摄像头、智能手机和智能家居设备,不管它们位于家中何处。一个路由器足可以覆盖一所小房子,但更大的房子,或一栋小办公楼,可能需要一个有两到三个节点的网状网络才能提供完整的覆盖。

当前流行的Wi-Fi网状网络技术会为网状网络节点之间的专用内部通信分配一些可用的无线频段。这样一来,它们就减少了原本可以提供给用户的一些容量。而自干扰消除技术可以实现内部通信和设备信号同时使用相同的频率,提高性能。但可惜的是,这种应用与4G和5G的应用还是有一定的差距。照现在的情况,为Wi-Fi网状网络开发自干扰消除技术的成本不划算,因为这些网络处理的流量通常比4G和5G基站低得多。
网状网络正越来越多地部署在蜂窝网络和Wi-Fi网络中。蜂窝和Wi-Fi技术在功能和使用方式上越来越相似,而网状网络可以解决两者都会遇到的覆盖和回程问题。网状网络也易于部署和“自我修复”,这意味着数据可以自动路由绕过故障节点。通过同一频率上的全双工,健壮的4G网状网络已经真正得到了极大的改进。预计在不久的将来,这也会同样出现在5G和Wi-Fi网络中。
它来得正好。无线通信技术的发展趋势是在相同数量的频谱中实现越来越多的功能。自干扰消除将实际可用的频谱数量增加了1倍,将助力迎来全新的无线通信应用。
作者:Joel Brand


—  The End  —


声明本公众号目前所载内容为本公众号原创、网络转载或根据非密公开性信息资料编辑整理,相关内容仅供参考及学习交流使用。由于部分文字、图片等来源于互联网,无法核实真实出处,如涉及相关争议,请跟我们联系。我们致力于保护作者知识产权或作品版权,本公众号所载内容的知识产权或作品版权归原作者所有。本公众号拥有对此声明的最终解释权。


投稿/招聘/推广/宣传/合作/入群 请加微信:liuyuanzhu


▼ 戳#阅读原文# ,加入#知识星球#精彩继续#分享/收藏/赞/在看#

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论 (0)
  • REACH和RoHS欧盟两项重要的环保法规有什么区别?适用范围有哪些?如何办理?REACH和RoHS是欧盟两项重要的环保法规,主要区别如下:一、核心定义与目标RoHS全称为《关于限制在电子电器设备中使用某些有害成分的指令》,旨在限制电子电器产品中的铅(Pb)、汞(Hg)、镉(Cd)、六价铬(Cr6+)、多溴联苯(PBBs)和多溴二苯醚(PBDEs)共6种物质,通过限制特定材料使用保障健康和环境安全REACH全称为《化学品的注册、评估、授权和限制》,覆盖欧盟市场所有化学品(食品和药品除外),通过登
    张工13144450251 2025-03-31 21:18 140浏览
  • 随着汽车向智能化、场景化加速演进,智能座舱已成为人车交互的核心承载。从驾驶员注意力监测到儿童遗留检测,从乘员识别到安全带状态判断,座舱内的每一次行为都蕴含着巨大的安全与体验价值。然而,这些感知系统要在多样驾驶行为、复杂座舱布局和极端光照条件下持续稳定运行,传统的真实数据采集方式已难以支撑其开发迭代需求。智能座舱的技术演进,正由“采集驱动”转向“仿真驱动”。一、智能座舱仿真的挑战与突破图1:座舱实例图智能座舱中的AI系统,不仅需要理解驾驶员的行为和状态,还要同时感知乘员、儿童、宠物乃至环境中的潜在
    康谋 2025-04-02 10:23 94浏览
  • 引言随着物联网和智能设备的快速发展,语音交互技术逐渐成为提升用户体验的核心功能之一。在此背景下,WT588E02B-8S语音芯片,凭借其创新的远程更新(OTA)功能、灵活定制能力及高集成度设计,成为智能设备语音方案的优选。本文将从技术特性、远程更新机制及典型应用场景三方面,解析该芯片的技术优势与实际应用价值。一、WT588E02B-8S语音芯片的核心技术特性高性能硬件架构WT588E02B-8S采用16位DSP内核,内部振荡频率达32MHz,支持16位PWM/DAC输出,可直接驱动8Ω/0.5W
    广州唯创电子 2025-04-01 08:38 158浏览
  •        在“软件定义汽车”的时代浪潮下,车载软件的重要性日益凸显,软件在整车成本中的比重逐步攀升,已成为汽车智能化、网联化、电动化发展的核心驱动力。车载软件的质量直接关系到车辆的安全性、可靠性以及用户体验,因此,构建一套科学、严谨、高效的车载软件研发流程,确保软件质量的稳定性和可控性,已成为行业共识和迫切需求。       作为汽车电子系统领域的杰出企业,经纬恒润深刻理解车载软件研发的复杂性和挑战性,致力于为O
    经纬恒润 2025-03-31 16:48 91浏览
  • 探针本身不需要对焦。探针的工作原理是通过接触被测物体表面来传递电信号,其精度和使用效果取决于探针的材质、形状以及与检测设备的匹配度,而非对焦操作。一、探针的工作原理探针是检测设备中的重要部件,常用于电子显微镜、坐标测量机等精密仪器中。其工作原理主要是通过接触被测物体的表面,将接触点的位置信息或电信号传递给检测设备,从而实现对物体表面形貌、尺寸或电性能等参数的测量。在这个过程中,探针的精度和稳定性对测量结果具有至关重要的影响。二、探针的操作要求在使用探针进行测量时,需要确保探针与被测物体表面的良好
    锦正茂科技 2025-04-02 10:41 67浏览
  • 退火炉,作为热处理设备的一种,广泛应用于各种金属材料的退火处理。那么,退火炉究竟是干嘛用的呢?一、退火炉的主要用途退火炉主要用于金属材料(如钢、铁、铜等)的热处理,通过退火工艺改善材料的机械性能,消除内应力和组织缺陷,提高材料的塑性和韧性。退火过程中,材料被加热到一定温度后保持一段时间,然后以适当的速度冷却,以达到改善材料性能的目的。二、退火炉的工作原理退火炉通过电热元件(如电阻丝、硅碳棒等)或燃气燃烧器加热炉膛,使炉内温度达到所需的退火温度。在退火过程中,炉内的温度、加热速度和冷却速度都可以根
    锦正茂科技 2025-04-02 10:13 64浏览
  • 提到“质量”这两个字,我们不会忘记那些奠定基础的大师们:休哈特、戴明、朱兰、克劳士比、费根堡姆、石川馨、田口玄一……正是他们的思想和实践,构筑了现代质量管理的核心体系,也深远影响了无数企业和管理者。今天,就让我们一同致敬这些质量管理的先驱!(最近流行『吉卜力风格』AI插图,我们也来玩玩用『吉卜力风格』重绘质量大师画象)1. 休哈特:统计质量控制的奠基者沃尔特·A·休哈特,美国工程师、统计学家,被誉为“统计质量控制之父”。1924年,他提出世界上第一张控制图,并于1931年出版《产品制造质量的经济
    优思学院 2025-04-01 14:02 145浏览
  • 在智能交互设备快速发展的今天,语音芯片作为人机交互的核心组件,其性能直接影响用户体验与产品竞争力。WT588F02B-8S语音芯片,凭借其静态功耗<5μA的卓越低功耗特性,成为物联网、智能家居、工业自动化等领域的理想选择,为设备赋予“听得懂、说得清”的智能化能力。一、核心优势:低功耗与高性能的完美结合超低待机功耗WT588F02B-8S在休眠模式下待机电流仅为5μA以下,显著延长了电池供电设备的续航能力。例如,在电子锁、气体检测仪等需长期待机的场景中,用户无需频繁更换电池,降低了维护成本。灵活的
    广州唯创电子 2025-04-02 08:34 148浏览
  • 引言在语音芯片设计中,输出电路的设计直接影响音频质量与系统稳定性。WT588系列语音芯片(如WT588F02B、WT588F02A/04A/08A等),因其高集成度与灵活性被广泛应用于智能设备。然而,不同型号在硬件设计上存在关键差异,尤其是DAC加功放输出电路的配置要求。本文将从硬件架构、电路设计要点及选型建议三方面,解析WT588F02B与F02A/04A/08A的核心区别,帮助开发者高效完成产品设计。一、核心硬件差异对比WT588F02B与F02A/04A/08A系列芯片均支持PWM直推喇叭
    广州唯创电子 2025-04-01 08:53 188浏览
  • 文/Leon编辑/cc孙聪颖‍步入 2025 年,国家进一步加大促消费、扩内需的政策力度,家电国补政策将持续贯穿全年。这一利好举措,为行业发展注入强劲的增长动力。(详情见:2025:消费提振要靠国补还是“看不见的手”?)但与此同时,也对家电企业在战略规划、产品打造以及市场营销等多个维度,提出了更为严苛的要求。在刚刚落幕的中国家电及消费电子博览会(AWE)上,家电行业的竞争呈现出胶着的态势,各大品牌为在激烈的市场竞争中脱颖而出,纷纷加大产品研发投入,积极推出新产品,试图提升产品附加值与市场竞争力。
    华尔街科技眼 2025-04-01 19:49 206浏览
  • 北京贞光科技有限公司作为紫光同芯授权代理商,专注于为客户提供车规级安全芯片的硬件供应与软件SDK一站式解决方案,同时配备专业技术团队,为选型及定制需求提供现场指导与支持。随着新能源汽车渗透率突破40%(中汽协2024数据),智能驾驶向L3+快速演进,车规级MCU正迎来技术范式变革。作为汽车电子系统的"神经中枢",通过AEC-Q100 Grade 1认证的MCU芯片需在-40℃~150℃极端温度下保持μs级响应精度,同时满足ISO 26262 ASIL-D功能安全要求。在集中式
    贞光科技 2025-04-02 14:50 116浏览
  • 职场之路并非一帆风顺,从初入职场的新人成长为团队中不可或缺的骨干,背后需要经历一系列内在的蜕变。许多人误以为只需努力工作便能顺利晋升,其实核心在于思维方式的更新。走出舒适区、打破旧有框架,正是让自己与众不同的重要法宝。在这条道路上,你不只需要扎实的技能,更需要敏锐的观察力、不断自省的精神和前瞻的格局。今天,就来聊聊那改变命运的三大思维转变,让你在职场上稳步前行。工作初期,总会遇到各式各样的难题。最初,我们习惯于围绕手头任务来制定计划,专注于眼前的目标。然而,职场的竞争从来不是单打独斗,而是团队协
    优思学院 2025-04-01 17:29 198浏览
  • 升职这件事,说到底不是单纯靠“干得多”或者“喊得响”。你可能也看过不少人,能力一般,甚至没你努力,却升得飞快;而你,日复一日地拼命干活,升职这两个字却始终离你有点远。这种“不公平”的感觉,其实在很多职场人心里都曾经出现过。但你有没有想过,问题可能就藏在一些你“没当回事”的小细节里?今天,我们就来聊聊你升职总是比别人慢,可能是因为这三个被你忽略的小细节。第一:你做得多,但说得少你可能是那种“默默付出型”的员工。项目来了接着干,困难来了顶上去,别人不愿意做的事情你都做了。但问题是,这些事情你做了,却
    优思学院 2025-03-31 14:58 114浏览
  • 文/郭楚妤编辑/cc孙聪颖‍不久前,中国发展高层论坛 2025 年年会(CDF)刚刚落下帷幕。本次年会围绕 “全面释放发展动能,共促全球经济稳定增长” 这一主题,吸引了全球各界目光,众多重磅嘉宾的出席与发言成为舆论焦点。其中,韩国三星集团会长李在镕时隔两年的访华之行,更是引发广泛热议。一直以来,李在镕给外界的印象是不苟言笑。然而,在论坛开幕前一天,李在镕却意外打破固有形象。3 月 22 日,李在镕与高通公司总裁安蒙一同现身北京小米汽车工厂。小米方面极为重视此次会面,CEO 雷军亲自接待,小米副董
    华尔街科技眼 2025-04-01 19:39 209浏览
  • 据先科电子官方信息,其产品包装标签将于2024年5月1日进行全面升级。作为电子元器件行业资讯平台,大鱼芯城为您梳理本次变更的核心内容及影响:一、标签变更核心要点标签整合与环保优化变更前:卷盘、内盒及外箱需分别粘贴2张标签(含独立环保标识)。变更后:环保标识(RoHS/HAF/PbF)整合至单张标签,减少重复贴标流程。标签尺寸调整卷盘/内盒标签:尺寸由5030mm升级至**8040mm**,信息展示更清晰。外箱标签:尺寸统一为8040mm(原7040mm),提升一致性。关键信息新增新增LOT批次编
    大鱼芯城 2025-04-01 15:02 196浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦