一文聊聊自动驾驶系统的传感器标定方法

智驾最前沿 2022-11-27 08:30

--关注回复“SOA--

↓领取:面向智能车辆开发的开放性SOA方案

传感器标定是自动驾驶的基本需求,一个车上装了多个/多种传感器,而它们之间的坐标关系是需要确定的。湾区自动驾驶创业公司ZooX的co-founder和CTO是Sebastia Thrun的学生Jesse Levinson,他的博士论文就是传感器标定。
这个工作可分成两部分:内参标定和外参标定,内参是决定传感器内部的映射关系,比如摄像头的焦距,偏心和像素横纵比(+畸变系数),而外参是决定传感器和外部某个坐标系的转换关系,比如姿态参数(旋转和平移6自由度)。
摄像头的标定曾经是计算机视觉中3-D重建的前提,张正友老师著名的的Zhang氏标定法,利用Absolute Conic不变性得到的平面标定算法简化了控制场。
这里重点是,讨论不同传感器之间的外参标定,特别是激光雷达和摄像头之间的标定。
另外在自动驾驶研发中,GPS/IMU和摄像头或者激光雷达的标定,雷达和摄像头之间的标定也是常见的。不同传感器之间标定最大的问题是如何衡量最佳,因为获取的数据类型不一样:
  • 摄像头是RGB图像的像素阵列;
  • 激光雷达是3-D点云距离信息(有可能带反射值的灰度值);
  • GPS-IMU给的是车身位置姿态信息;
  • 雷达是2-D反射图。
这样的话,实现标定误差最小化的目标函数会因为不同传感器配对而不同。
另外,标定方法分targetless和target两种,前者在自然环境中进行,约束条件少,不需要用专门的target;后者则需要专门的控制场,有ground truth的target,比如典型的棋盘格平面板。
这里仅限于targetless方法的讨论,依次给出标定的若干算法。

首先是手-眼标定

这是一个被标定方法普遍研究的,一定约束条件下的问题:可以广义的理解,一个“手”(比如GPS/IMU)和一个“眼”(激光雷达/摄像头)都固定在一个机器上,那么当机器运动之后,“手”和“眼”发生的姿态变化一定满足一定的约束关系,这样求解一个方程就可以得到“手”-“眼”之间的坐标转换关系,一般是AX=XB形式的方程。
手眼系统分两种:eye in hand和eye to hand,我们这里显然是前者,即手-眼都在动的情况。
手眼标定分两步法和单步法,后者最有名的论文是“hand eye calibration using dual quaternion"。一般认为,单步法精度高于两步法,前者估计旋转之后再估计平移。
这里通过东京大学的论文“LiDAR and Camera Calibration using Motion Estimated by Sensor Fusion Odometry”来看看激光雷达和摄像头的标定算法。
显然它是求解一个手-眼标定的扩展问题-,即2D-3D标定,如图所示:
求解激光雷达的姿态变化采用ICP,而摄像头的运动采用特征匹配。后者有一个单目SFM的scale问题,论文提出了一个基于传感器融合的解法:初始估计来自于无尺度的摄像头运动和有尺度的激光雷达运动;之后有scale的摄像头运动会在加上激光雷达点云数据被重新估计。最后二者的外参数就能通过手-眼标定得到。下图是算法流程图:
手眼标定的典型解法是两步法:先求解旋转矩阵,然后再估计平移向量,公式在下面给出:                       
现在因为scale问题,上述解法不稳定,所以要利用激光雷达的数据做文章,见下图:
3-D点云的点在图像中被跟踪,其2D-3D对应关系可以描述为如下公式:
而求解的问题变成了:
上面优化问题的初始解是通过经典的P3P得到的。
得到摄像头的运动参数之后可以在两步手眼标定法中得到旋转和平移6参数,其中平移估计如下:
注:这里估计摄像头运动和估计手眼标定是交替进行的,以改进估计精度。除此之外,作者也发现一些摄像头运动影响标定精度的策略,看下图分析:
可以总结出:1)摄像头实际运动a 越小,投影误差越小;2) ( )越小,投影误差越小。第一点说明标定时候摄像头运动要小,第二点说明,标定的周围环境深度要变化小,比如墙壁。
另外还发现,增加摄像头运动的旋转角,摄像头运动估计到手眼标定的误差传播会小。
这个方法无法在室外自然环境中使用,因为点云投影的图像点很难确定。
有三篇关于如何优化激光雷达-摄像头标定的论文,不是通过3-D点云和图像点的匹配误差来估计标定参数,而是直接计算点云在图像平面形成的深度图,其和摄像头获取的图像存在全局匹配的测度。
不过这些方法,需要大量迭代,最好的做法是根据手眼标定产生初始值为好。
另外,密西根大学是采用了激光雷达反射值,悉尼大学在此基础上改进,两个都不如斯坦福大学方法方便,直接用点云和图像匹配实现标定。
斯坦福论文“Automatic Online Calibration of Cameras and Lasers”。
斯坦福的方法是在线修正标定的“漂移”,如下图所示:精确的标定应该使图中绿色点(深度不连续)和红色边缘(通过逆距离变换 IDT,即inverse distance transform)匹配。
标定的目标函数是这样定义的:
其中w 是视频窗大小,f 是帧#,(i, j) 是图像中的像素位置,而p是点云的3-D点。X表示激光雷达点云数据,D是图像做过IDT的结果。
下图是实时在线标定的结果例子:
第一行标定好的,第二行出现漂移,第三行重新标定。
密西根大学的论文“Automatic Targetless Extrinsic Calibration of a 3D Lidar and Camera by Maximizing Mutual Information”。
这里定义了标定的任务就是求解两个传感器之间的转换关系,如图:求解R,T。
定义的Mutual Information (MI) 目标函数是一个熵值:
求解的算法是梯度法:
下图是一个标定的例子:RGB像素和点云校准。
澳大利亚悉尼大学的论文“Automatic Calibration of Lidar and Camera Images using Normalized Mutual Information”。
本文是对上面方法的改进。传感器配置如图:
标定的流程在下图给出:
其中定义了一个新测度Gradient Orientation Measure (GOM)如下:
实际上是图像和激光雷达点云的梯度相关测度。
点云数据和图像数据匹配时候需要将点云投影到柱面图像上,如图所示:
投影公式如下:
而点云的梯度计算之前需要将点云投影到球面上,公式如下:
最后,点云的梯度计算方法如下:
标定的任务就是求解GOM最大,而文中采用了蒙特卡洛方法,类似particle filter。下图是一个结果做例子:

IMU-摄像头标定

德国Fraunhofer论文“INS-Camera Calibration without Ground Control Points“。
本文虽然是给无人机的标定,对车辆也适合。
这是IMU定义的East, North, Up (ENU) 坐标系:
而实际上IMU-摄像头标定和激光雷达-摄像头标定都是类似的,先解决一个手眼标定,然后优化结果。只是IMU没有反馈信息可用,只有姿态数据,所以就做pose graph optimization。下图是流程图:其中摄像头还是用SFM估计姿态。
这是使用的图像标定板:

激光雷达系统标定

牛津大学论文“Automatic self-calibration of a full field-of-view 3D n-laser scanner".
本文定义点云的“crispness” 作为质量测度,通过一个熵函数Rényi Quadratic Entropy (RQE)最小化作为在线标定激光雷达的优化目标。(注:其中作者还讨论了激光雷达的时钟偏差问题解决方案)
“crisp“其实是描述点云分布作为一个GMM(Gaussian Mixture Model)形式下的致密度。根据信息熵的定义,RQE被选择为测度:
下图是一个标定后采集的点云结果:
标定算法如下:

雷达-摄像头标定

西安交大论文“Integrating Millimeter Wave Radar with a Monocular Vision Sensor for On-Road Obstacle Detection Applications”。
在讲传感器融合的时候提过这部分工作,这里重点介绍标定部分。首先坐标系关系如下:
传感器配置如下:
标定环境如下:
标定其实是计算图像平面和雷达反射面之间的homography矩阵参数,如下图:

转载自知乎@黄浴,文中观点仅供分享交流,不代表本公众号立场,如涉及版权等问题,请您告知,我们将及时处理。

-- END --

智驾最前沿 「智驾最前沿」深耕自动驾驶领域技术、资讯等信息,解读行业现状、紧盯行业发展、挖掘行业前沿,致力于助力自动驾驶发展与落地!公众号:智驾最前沿
评论
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-11 17:58 86浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 75浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 88浏览
  • 在智能化技术快速发展当下,图像数据的采集与处理逐渐成为自动驾驶、工业等领域的一项关键技术。高质量的图像数据采集与算法集成测试都是确保系统性能和可靠性的关键。随着技术的不断进步,对于图像数据的采集、处理和分析的需求日益增长,这不仅要求我们拥有高性能的相机硬件,还要求我们能够高效地集成和测试各种算法。我们探索了一种多源相机数据采集与算法集成测试方案,能够满足不同应用场景下对图像采集和算法测试的多样化需求,确保数据的准确性和算法的有效性。一、相机组成相机一般由镜头(Lens),图像传感器(Image
    康谋 2024-12-12 09:45 75浏览
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 112浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 99浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 109浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 66浏览
  • 本文介绍瑞芯微RK3588主板/开发板Android12系统下,APK签名文件生成方法。触觉智能EVB3588开发板演示,搭载了瑞芯微RK3588芯片,该开发板是核心板加底板设计,音视频接口、通信接口等各类接口一应俱全,可帮助企业提高产品开发效率,缩短上市时间,降低成本和设计风险。工具准备下载Keytool-ImportKeyPair工具在源码:build/target/product/security/系统初始签名文件目录中,将以下三个文件拷贝出来:platform.pem;platform.
    Industio_触觉智能 2024-12-12 10:27 62浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-12 10:13 40浏览
  • 首先在gitee上打个广告:ad5d2f3b647444a88b6f7f9555fd681f.mp4 · 丙丁先生/香河英茂工作室中国 - Gitee.com丙丁先生 (mr-bingding) - Gitee.com2024年对我来说是充满挑战和机遇的一年。在这一年里,我不仅进行了多个开发板的测评,还尝试了多种不同的项目和技术。今天,我想分享一下这一年的故事,希望能给大家带来一些启发和乐趣。 年初的时候,我开始对各种开发板进行测评。从STM32WBA55CG到瑞萨、平头哥和平海的开发板,我都
    丙丁先生 2024-12-11 20:14 73浏览
  • 铁氧体芯片是一种基于铁氧体磁性材料制成的芯片,在通信、传感器、储能等领域有着广泛的应用。铁氧体磁性材料能够通过外加磁场调控其导电性质和反射性质,因此在信号处理和传感器技术方面有着独特的优势。以下是对半导体划片机在铁氧体划切领域应用的详细阐述: 一、半导体划片机的工作原理与特点半导体划片机是一种使用刀片或通过激光等方式高精度切割被加工物的装置,是半导体后道封测中晶圆切割和WLP切割环节的关键设备。它结合了水气电、空气静压高速主轴、精密机械传动、传感器及自动化控制等先进技术,具有高精度、高
    博捷芯划片机 2024-12-12 09:16 85浏览
  • 应用环境与极具挑战性的测试需求在服务器制造领域里,系统整合测试(System Integration Test;SIT)是确保产品质量和性能的关键步骤。随着服务器系统的复杂性不断提升,包括:多种硬件组件、操作系统、虚拟化平台以及各种应用程序和服务的整合,服务器制造商面临着更有挑战性的测试需求。这些挑战主要体现在以下五个方面:1. 硬件和软件的高度整合:现代服务器通常包括多个处理器、内存模块、储存设备和网络接口。这些硬件组件必须与操作系统及应用软件无缝整合。SIT测试可以帮助制造商确保这些不同组件
    百佳泰测试实验室 2024-12-12 17:45 53浏览
  • 全球智能电视时代来临这年头若是消费者想随意地从各个通路中选购电视时,不难发现目前市场上的产品都已是具有智能联网功能的智能电视了,可以宣告智能电视的普及时代已到临!Google从2021年开始大力推广Google TV(即原Android TV的升级版),其他各大品牌商也都跟进推出搭载Google TV操作系统的机种,除了Google TV外,LG、Samsung、Panasonic等大厂牌也开发出自家的智能电视平台,可以看出各家业者都一致地看好这块大饼。智能电视的Wi-Fi连线怎么消失了?智能电
    百佳泰测试实验室 2024-12-12 17:33 53浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦