单端信号与差分信号对比

硬件笔记本 2022-11-26 07:30

点击上方名片关注了解更多



1


单端信号


单端信号是相对于差分信号而言的,单端输入指信号有一个参考端和一个信号端构成,参考端一般为地端。





2


差分信号


差分传输是一种信号传输的技术,区别于传统的一根信号线一根地线的做法(单端信号),差分传输在这两根线上都传输信号,这两个信号的振幅相等,相位相反。在这两根线上传输的信号就是差分信号。




3


单端与差分信号比较


差分信号与单端信号走线的做法相比,其优缺点分别是 —— 


优点:
  1. 抗干扰能力强。干扰噪声一般会等值、同时被加载到两根信号线上,而其差值为0,即,噪声对信号的逻辑意义不产生影响。
  2. 能有效抑制电磁干扰(EMI)。由于两根线靠得很近且信号幅值相等,这两根线与地线之间的耦合电磁场的幅值也相等,同时他们的信号极性相反,其电磁场将相互抵消。因此对外界的电磁干扰也小。
  3. 时序定位准确。差分信号的接受端是两根线上的信号幅值之差发生正负跳变的点,作为判断逻辑0/1跳变的点的。而普通单端信号以阈值电压作为信号逻辑0/1的跳变点,受阈值电压与信号幅值电压之比的影响较大,不适合低幅度的信号。


 
缺点:
  • 若电路板的面积非常紧张,单端信号可以只有一根信号线,地线走地平面,而差分信号一定要走两根等长、等宽、紧密靠近、且在同一层面的线。这样的情况常常发生在芯片的管脚间距很小,以至于只能穿过一根走线的情况下。




4


异同分析



一、基本区别

不说理论上的定义,说实际的。单端信号指的是用一个线传输的信号,一根线没参考点怎么会有信号呢?easy,参考点就是地啊。也就是说,单端信号是在一导线上传输的与地之间的电平差。那么当你把信号从A点传递到B点的时候,有一个前提就是A点和B点的电势应该差不多是一样的,为啥说差不多呢,后面再详细说。


差分信号指的是用两根线传输的信号,传输的是两根信号之间的电平差。当你把信号从A点传递到B点的时候,A点和B点的地电势可以一样也可以不一样,但是A点和B点的地电势差有一个范围,超过这个范围就会出问题了。


二、传输上的差别

单端信号的优点是,省钱、方便。大部分的低频电平信号都是使用单端信号进行传输的。一个信号一根线,最后,把两边的地用一根线一连,完事。缺点在不同应用领域暴露的不一样,归结起来,最主要的一个方面就是,抗干扰能力差。


首先说最大的一个问题,地电势差以及地一致性。大家都认为地是0V,实际上,真正的应用中地是千奇百怪变化莫测的一个东西。比如A点到B点之间,有那么一根线,用来连接两个系统之间的地,那么如果这根线上的电流很大时,两点间的地电势可能就不可忽略了,这样一个信号,从A的角度看起来是1V,从B的角度看起来可能只有0.8V了,这可不是一个什么好事情,这就是地电势差对单端信号的影响。


接着说地一致性。实际上很多时候这个地上由于电流忽大忽小,布局结构远远近近,  地上会产生一定的电压波动,这也会影响单端信号的质量。


差分信号在这一点有优势,由于两个信号都是相对于地的 ,当地电势发生变化时,两个信号同时上下浮动(当然是理想状态下), 差分两根线之间的电压差却很少发生变化,这样信号质量不高了吗?其次就是传输过程中的干扰,当一根导线穿过某个线圈时,且这根线圈上通着交流电时,这根导线上会产生感应电动势。


好简单的道理,实际工业现场遇到的大部分。问题就是这么简单,可是你无法抗拒~ 如果是单端信号,产生多少,就是多少,这就是噪声你毫无办法。但是如果是差分信号,你就可以考虑拉,为啥呢,两根导线是平行传输的, 每根导线上产生的感应电动势不是一样吗,两个一减,他不没了吗~ 确实,同样的情况下,传输距离较长时,差分信号具有更强的驱动能力、更强的抗干扰能力,同样的,当你传输的信号会对其他设备有干扰时,差分信号也比单端信号产生的信号相对小,也就是常说的EMI特性。



三、使用时需要注意

由于差分比单端有不少好处,在模拟信号传输中很多人愿意使用差分信号,比如桥式应变片式力传感器,其输出信号满量程时有的也只有2mV,如果使用单端信号传输,那么这个信号只要电源的纹波就能把他吃光。所以实际上,都是用仪表运进行放大后,再进行处理。而仪表运方正是处理差分信号最有力的几个工具之一。


但是,使用差分信号时,一定要注意一个问题,共模电压范围。也就是说,这两根线上的电压,相对于系统的地,还是不能太大。你传输0.1V的信号没问题,但是如果一根是 1000.0 另外一根是 1000.1,那就不好玩了,问题在于,在很多场合下使用差分信号都是为了不让两个系统的地简单的共在一起,更不能把差分信号中的一根直接接在本地系统的地上,那不白费劲吗 —— 又成单端了,那么如何抑制共模电压呢?


其实也挺简单的,将两根线都通过一个足够大的电阻,连接到系统的地上。这就像一根拴在风筝上的线,我在地上跑跑跳跳,不会影响风筝的高度     但是你永远逃不出我的视线,而我的视线,在电子行业,叫共模电压范围。最后,回答一个网友的问题:单端转差分怎么转。单单将单端信号用反向跟随器跟随并不是不行,但是差分信号被平白的放大了2倍,常见的用仪表运方+普通运方搭建的单端转差分是个很好的例子。




5


对差分认识常见误区


  1. 认为差分信号不需要地平面作为回流路径,或者认为差分走线彼此为对方提供回流途径。造成这种误区的原因是被表面现象迷惑,或者对高速信号传输的机理认识还不够深入。差分电路对于类似地弹以及其它可能存在于电源和地平面上的噪音信号是不敏感的。地平面的部分回流抵消并不代表差分电路就不以参考平面作为信号返回路径,其实在信号回流分析上,差分走线和普通的单端走线的机理是一致的,即高频信号总是沿着电感最小的回路进行回流,最大的区别在于差分线除了有对地的耦合之外,还存在相互之间的耦合,哪一种耦合强,那一种就成为主要的回流通路。


    在PCB电路设计中,一般差分走线之间的耦合较小,往往只占 10~20%的耦合度,更多的还是对地的耦合,所以差分走线的主要回流路径还是存在于地平面。当地平面发生不连续的时候,无参考平面的区域,差分走线之间的耦合才会提供主要的回流通路,尽管参考平面的不连续对差分走线的影响没有对普通的单端走线来的严重,但还是会降低差分信号的质量,增加 EMI,要尽量避免。也有些设计人员认为,可以去掉差分走线下方的参考平面,以抑制差分传输中的部分共模信号,但从理论上看这种做法是不可取的,阻抗如何控制?不给共模信号提供地阻抗回路,势必会造成 EMI 辐射,这种做法弊大于利。


  2. 认为保持等间距比匹配线长更重要。在实际的PCB布线中,往往不能同时满足差分设计的要求。由于管脚分布,过孔以及走线空间等因素存在,必须通过适当的绕线才能达到线长匹配的目的,但带来的结果必然是差分对的部分区域无法平行。PCB 差分走线的设计中最重要的规则就是匹配线长,其它的规则都可以根据设计要求和实际应用进行灵活处理。


  3. 认为差分走线一定要靠很近。让差分走线靠近无非是为了增强他们的耦合,既可以提高对噪声的免疫力,还能充分利用磁场的相反极性来抵消对外界的电磁干扰。虽说这种做法在大多数情况下是非常有利的,但不是绝对的,如果能保证让它们得到充分的屏蔽,不受外界干扰,那么我们也就不需要再让通过彼此的强耦合达到抗干扰和抑制 EMI 的目的了。


    如何才能保证差分走线具有良好的隔离和屏蔽呢?增大与其它信号走线的间距是最基本的途径之一,电磁场能量是随着距离呈平方关系递减的,一般线间距超过4 倍线宽时,它们之间的干扰就极其微弱了,基本可以忽略。此外,通过地平面的隔离也可以起到很好的屏蔽作用,这种结构在高频的(10G 以上)IC封装PCB 设计中经常会被采用,被称为CPW结构,可以保证严格的差分阻抗控制。


    差分走线也可以走在不同的信号层中,但一般不建议这种走法,因为不同的层产生的诸如阻抗、过孔的差别会破坏差模传输的效果,引入共模噪声。此外,如果相邻两层耦合不够紧密的话,会降低差分走线抵抗噪声的能力,但如果能保持和周围走线适当的间距,串扰就不是个问题。在一般频率(GHz 以下),EMI 也不会是很严重的问题,实验表明,相距 500Mils 的差分走线,在3 米之外的辐射能量衰减已经达到 60dB,足以满足 FCC的电磁辐射标准,所以设计者根本不用过分担心差分线耦合不够而造成电磁不兼容问题。


    差分曼切斯特编码并不是差分信号的一种,它指的是用在每一位开始时的电平跳变来表示逻辑状态“0”,不跳变来表示逻辑状态“1”。但每一位中间的跳变是用来做同步时钟,没有逻辑意义。


    双绞线上面走的不一定是差分信号,单端信号在双绞线上的电磁辐射也比平行走线的辐射小。

声明:


声明:本对所有原创、转载文章的陈述与观点均保持中立,推送文章仅供读者学习和交流。文章、图片等版权归原作者享有,如有侵权,联系删除。


推荐阅读

  • 硬件精选文章

  • EMC相关文章

  • 电子元器件


后台回复“加群,管理员拉你入同行技术交流群。

硬件笔记本 一点一滴,厚积薄发。
评论
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 66浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 470浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 189浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 184浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 200浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 118浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 502浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 123浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 156浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 76浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 105浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 62浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦