欧姆定理是如何被提出的?

云脑智库 2022-11-26 00:00

01 姆定理

  文来自于: 「Ohms Law: History and Biography」[1]

一、前言

  现如今欧姆定律是任何电类学科同学再熟悉不过的理论了, 但它的诞生以及被科学界所接纳的背后曲折故事,被 Kathy 通过生动的语言描述的令人着迷,下面让我们听听她的讲述吧。

  我们大部分学习过基础物理学和电学的都学习过欧姆定理。 但是你们可能不知道在1827年,当欧姆提出他的这个闻名于世的定理的时候却遭到了广泛的抵制,差不多直接导致他丢失了工作。 这里将会给大家介绍一下欧姆本人的故事,以及他是如何利用当时可以得到的简单设备得到这个电学里面的基本方程的。 为什么他的理论遭人嫌弃,后来为什么又被科学界所接受的呢?

二、早期的欧姆

  乔治·西蒙·欧姆于1787年生在巴伐利亚,所在家庭原本有七个孩子,欧姆是三个活到成年孩子中的老大。他父母是工人,父亲自学了锁匠手艺,母亲则来自于裁缝的家庭。他父亲希望他和他的弟弟能够继承家庭的锁匠生意,然而他的爸爸却是一个数学爱好者,相信如果他的孩子有机会在学校得到数学方面的培养定会在数学方面表现出很大的优势。在当时,商贩的孩子进入高中上学却不是一件寻常的事情。到了1804年,乔治16岁,他的弟弟14岁,当地一位数学教授听说了他俩的数学天分之后倍感惊讶,于是给欧姆的父亲去了封信,写到你的两个孩子如此聪明,堪比伯努利兄弟的才气。他所说的伯努利是指数学家雅阁·伯努利和约翰·伯努利,这是当时瑞士数学大家,因其研究伯努利数列、微积分等贡献闻名于世。

▲ 图1.1.1 欧姆兄弟两人

  老欧姆看到此信非常激动,于是决定送他两个孩子去上大学,至于祖传锁匠的手艺也就放在一边了。马丁·欧姆,也就是乔治·欧姆的弟弟最终成为一位著名的数学家。他们去的学校是埃朗根大学,但仅仅过了18个月,便因上学费用不足欧姆离开了学校,到了瑞士成为一名数学辅导员。后来欧姆花了五年多的时间最终获得了他的文凭。又过了七年,直到1817年他才在克隆一所很有名望的高中学校获得永久教职,作为数学教授教授物理学。

三、欧姆的研究工作

  到了1820年的七月份, 丹麦的一位科学家和哲学家,名叫汉斯·克里斯蒂安·奥斯特发现了电流产生磁场现象,通有电流的电线可以转动罗盘中的磁针,这是人类首次揭示出电与磁之间的联系。这个发现的一个重要结果是可以让科学家利用磁场力来测量电线中的电流方向和强度。1825年,欧姆决定利用这个事实来系统的研究金属导线的长度是如何影响电线中电流大小的。当然选择这个课题进行研究,据欧姆后来解释是因为这个领域在当时的德国并不热门,所以可能遇到的竞争就会相对小一些。

▲ 图1.1.2 奥斯特电流实验

  欧姆使用了一个磁化的金属针,悬挂在一个扭丝上,利用库伦发明的扭矩称来测量电线和磁针之间的作用力矩。欧姆知道他所使用的化学电池会很快随着时间衰弱。他使用又粗又厚的金属片组成标准导线,实验中更换不同的金属片。对于每个标准导线,他对多次测量的电磁力取平均,以便得到电池输出电流的准确值。他研究了电流大小与金属片之间的关系。再通过复杂分析,欧姆得到了一个复杂的关系式。他不得不承认对于长的导线,他的结果并不理想,这是欧姆研究工作的开始。

  实验工作清楚地展示了,导线越长,其中流过的电流越小。后来欧姆又通过相同的方法测量了不同材料的导线,由此得到了不同材料的导电率。此时,早先年间曾说欧姆兄弟堪比伯努利兄弟的那位教授,建议他可以尝试使用热电偶作为实验的电压源,因为热电偶可以提供更加稳定的电压。热电偶现象是在1821年,也就是五年前就被德国物理学家托马斯·塞贝克发现,如果两个不同的金属被焊接在一起,两个节点的温度不同,节点之间使用电线相连,其中就会有电流流过,所产生的的磁场可以偏转磁针。

  塞贝克当时认为装置产生了磁场,进而引起磁针转动,几乎是同一年之内,1820年,奥斯特就发现了电磁现象,并对塞贝克的热电偶装置进行了解释,其中热电偶产生了热电动势,进而引起导线中的电流,所形成的的磁场导致磁针转动,并将这种现象成为热电效应,这个名称仍在使用。

▲ 图1.1.3 奥斯特对热电偶效应的解释

  1824年安培和他的朋友贝克勒尔发现热电偶两个节点之间的电动势是温差的函数。到了1826年,欧姆构建了一个热电偶,冷端是冰水,热端是开水。他高兴地发现,热电偶所产生的的电流可以稳定持续几个小时。借助于热电偶所产生的的电动势,他重新重复了他的第一个实验。测量了八种不同长度的电线,欧姆发现电磁力,也就是取决于电流的大小,随着导线的长度而下降。它们之间的关系可以由一个方程所描述。X等于a 除以 b 加 x。很快,欧姆认为方程中的参数 a 和 b 是由电路中其它部分决定,他称为激励作用力。

    为了确定它们之间的关系,他明智的选择了不同热电偶上的温度差重新做了实验测试,不同温度对应不同的激励作用力,或者张力,也就是今天我们所说的电压。对于不同的导线长度,他发现电流与导线长度之间遵循相同的方程。方程中的 a 下降了,但参数 b 却是相同的。换句话说,电线中的电流遵循相同的分式,分子表明了热电偶电池的强度,分母则是电线的长度,欧姆将其称为阻力长度。

▲ 图1.1.4 在热电偶所产生的的电动势下进行电流测量

四、欧姆的噩运

  对于这个结论,欧姆非常高兴,但觉得缺少数学推导,他想参考一本关于热量流动得数来建立电流的模型(也是赶当时科学界的时尚)。这本书就是大名鼎鼎的傅里叶在1822年出版的关于热量流动的分析理论。他申请了休假一年来专门研究这方面的理论。到了1827年,他出版了一本很薄的书,书名为《电路的数学研究》。坦白的说,这本书的出版并不成功,批评家称这本书是被罗织出来的纯粹幻想,无法治愈妄想的结果,它唯一的作用是对自然尊严的歪曲

  为何这本书恶评如潮?这值得我们深究其中的缘由。首先,这本书太数学化了,思想并没有很好的表述出来。例如,在1891年的一位翻译作家得不从其他科学家的论文和书籍中摘录很多片段,才能够把欧姆书籍中的思想说的明白,这样读者才能够理解到底在书中欧姆说了些啥。

     其次,欧姆的结论与在1820年期间人们建立起来的观点恰好相反。当时人们认为电线中的电流与两个节点之间的电压,或者说是两个节点之间的张力是无关的,这个理念最初来自于1820年安培所做的实验。当时安培也想找到电池的电压与电流之间的关系,他也使用电池驱动电线产生电流来改变磁针的方向,发现多个电池串联,按道理电池总的电压增加了,但流过导线的电流却没有太大的变化,反映到磁针的方向几乎没有太大的变化。这么多的电池串联,可以产生更大的电击,所以中间的张力,也就是电压更强了,但电流却没有增加,由此,安培得出了电路中的电压与电流没有关系。

  当时的包括安培在内的很多科学家不理解,电池存在一种被称为内阻的参数,当时的电池内阻很大。虽然多个电池串联,得到了更大的电动势,但串联电阻也同等增加,电磁电路中的电阻几乎都是由电池内阻决定的,所以增加电池的数量并不能够显著增加回路中的电流,当时的设备并不能够检测这方面的差异。

  第三点,欧姆使用了新的方法定义了电路中的张力,也就是电动势。当时人们理解这种张力是来自于电池或者热电偶,并没有形成电路中任意两点之间的电位差的概念。欧姆的这种观念很难被人们理解和喜欢。欧姆很聪明,他能够提出这种新的电路概念,但却无法通俗易懂地解释他们。

▲ 图1.1.5 产生电动势的两种装置


  第四点,也是最糟糕的是欧姆的工作遭到了一位名叫乔治·波尔的科学家的方法。波尔也在电路杂志中发表了他的研究结果,同样欧姆也不喜欢波尔的工作。波尔称欧姆的工作是彻头彻尾的失败。他对德国教育部长说,一个物理学家给出这样的异端邪说,就不配在从事科学教学工作。欧姆的工作彻底惹怒了他所在学校的教务长,并宣布他不可能再留下来继续教学。后来他的传记作家称欧姆悲伤的离职了。后来欧姆继续寻找工作,最后到了一个军事学校当了一名教员。直到1833年,欧姆在纽伦堡理工学校直到新的教授职位。

五、欧姆的新生

  欧姆在主流科学界最初火起来不是在德国,而是在英国。回看1830前后,英国一位鞋匠,名叫威廉·斯图尔金,他发明过电磁铁。一天在伦敦皇家学会跟别人干架。原因是啥呢?在1836年年中,斯图尔金自己办了一个杂志,叫做《电气、磁场和化学》,介绍自己制作的电机,声称在所见到同尺寸的机器中他的电机功率最大,这个电机由大型蒸汽机驱动。这引起了很多电机制作爱好者的兴趣,纷纷到斯图尔金的杂志社寻求帮助。

    1837年, 斯图尔金翻译出版了旅居德国的俄国建筑师,名叫毛里茨·雅克比的文章。他在三年前自己发明了一台电动机,明显强于斯图尔金的设计。另外,雅克比的哥哥,是一位数学家,是欧姆的粉丝。他写的文章中称它的电机是欧姆理论的产物。文中称,欧姆先生的理论将问题进行了简化,并和实际中的电池堆现象符合的很好。我毫不犹豫的就采用了欧姆的理论。虽然雅克比的论文在法国、德国、俄国都出版了,但并没有引起多大的关注。

▲ 图1.1.6 乔治·欧姆

  但在斯图尔金的杂志上翻译成英语之后,再对比雅克比对自己的电机的过分吹捧,使得读者和杂志的赞助商都开始应用欧姆定理,或者参考欧姆定理所形成的的电阻的概念。但主流科学界,特别是皇家学会中的科学界还是对欧姆的理论无动于衷。幸运的是,一名叫做查尔斯·惠特斯通的工程师他在斯图尔金杂志的电机制作爱好者与皇家学会之间架起了一个桥梁。

      惠特斯通在研究声音信号传递过程中激发了对科学研究的兴趣。在他童年时代,他发明了一个七弦琴,作为他叔叔乐器行中吸引顾客的招牌。他通过演奏隐藏在其他房间里的钢琴来激发七弦琴发声,这两者之间有一根线相连。惠特斯通对声音传播进行了多年的研究,也发明了多个乐器,1834年,惠特斯通展示了测量电线中电流速度的装置,这一战成名,在科学圈子里扬名立万。立刻被伦敦国王学院聘为教授。由于他过于不善公众演讲,所以几乎没有上过任何课程。

▲ 图1.1.7 威廉·斯图尔特的电动机

  在1837年二月,一位名叫威廉·库克的士兵怀揣电报的想法找到惠特斯通寻求帮助。他们形成了合作伙伴关系,很快他们便非常有名了。惠特斯通读了雅克比关于欧姆的文章之后,很快也称为欧姆的粉丝。在1838年,英国科学推进协会决定对翻译出版科学回忆录设立100英镑的基金。惠特斯通是基金委员会的成员,在他的推动下,1841年他们反映出版了欧姆的著作。突然间科学家并开始学习欧姆的工作并成为他的拥趸。在1841年欧姆获得了英国皇家协会最高荣誉,克普利奖章,奖励他在电流规律研究贡献。在同时,惠特斯通继续推动欧姆理论的传播。1842年,他请他的朋友易达·拉夫莱斯对欧姆的著作进行更好的反映。在1843年,在一篇介绍惠特斯通电桥的文章中,他写到,这里描述的仪器和处理过程都在欧姆关于电流理论中都已建立,那是一个优美丰富的理论。

▲ 图1.1.8 查尔斯·惠特斯顿的电流速度测量装置

  欧姆认为自己得到了英国皇家协会的很多帮助,但他并不了解惠特斯通,在一本1849年出版的分子物理学书中,他写到,此书献给伦敦皇家学院,你们的鼓励给予我勇气在科学领域中得以复生,虽然之前遭受过无情的对待。欧姆希望这本书是当时为数不多的在分子物理学中的著作,然而当他发现自己的思想已经被发布之后,就放弃了所有的相关工作。

  欧姆因中风在1854年七月去世,享年65岁。最终,欧姆的结果现在被接受为欧姆定律,被写作电压等于电流乘以电阻。1861年,英国科学推进协会提出电阻标准单位称为Ohma,为纪念欧姆。1867年简化为 Ohm,书写时使用希腊字母 Ω。有趣的是,作为电阻的倒数,电导,即描述导线中电子流动容易程度的物理量,它的单位定位以为 mho,书写时使用 Ω 倒过来的符号。

参考资料

[1]

「Ohms Law: History and Biography」: https://www.youtube.com/watch?v=fk_BpXlfZ8U

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 54浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 59浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 57浏览
  • 艾迈斯欧司朗全新“样片申请”小程序,逾160种LED、传感器、多芯片组合等产品样片一触即达。轻松3步完成申请,境内免费包邮到家!本期热荐性能显著提升的OSLON® Optimal,GF CSSRML.24ams OSRAM 基于最新芯片技术推出全新LED产品OSLON® Optimal系列,实现了显著的性能升级。该系列提供五种不同颜色的光源选项,包括Hyper Red(660 nm,PDN)、Red(640 nm)、Deep Blue(450 nm,PDN)、Far Red(730 nm)及Ho
    艾迈斯欧司朗 2024-11-29 16:55 155浏览
  • 国产光耦合器因其在电子系统中的重要作用而受到认可,可提供可靠的电气隔离并保护敏感电路免受高压干扰。然而,随着行业向5G和高频数据传输等高速应用迈进,对其性能和寿命的担忧已成为焦点。本文深入探讨了国产光耦合器在高频环境中面临的挑战,并探索了克服这些限制的创新方法。高频性能:一个持续关注的问题信号传输中的挑战国产光耦合器传统上利用LED和光电晶体管进行信号隔离。虽然这些组件对于标准应用有效,但在高频下面临挑战。随着工作频率的增加,信号延迟和数据保真度降低很常见,限制了它们在电信和高速计算等领域的有效
    腾恩科技-彭工 2024-11-29 16:11 106浏览
  • 国产光耦合器正以其创新性和多样性引领行业发展。凭借强大的研发能力,国内制造商推出了适应汽车、电信等领域独特需求的专业化光耦合器,为各行业的技术进步提供了重要支持。本文将重点探讨国产光耦合器的技术创新与产品多样性,以及它们在推动产业升级中的重要作用。国产光耦合器创新的作用满足现代需求的创新模式新设计正在满足不断变化的市场需求。例如,高速光耦合器满足了电信和数据处理系统中快速信号传输的需求。同时,栅极驱动光耦合器支持电动汽车(EV)和工业电机驱动器等大功率应用中的精确高效控制。先进材料和设计将碳化硅
    克里雅半导体科技 2024-11-29 16:18 157浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 86浏览
  • 在电子技术快速发展的今天,KLV15002光耦固态继电器以高性能和强可靠性完美解决行业需求。该光继电器旨在提供无与伦比的电气隔离和无缝切换,是现代系统的终极选择。无论是在电信、工业自动化还是测试环境中,KLV15002光耦合器固态继电器都完美融合了效率和耐用性,可满足当今苛刻的应用需求。为什么选择KLV15002光耦合器固态继电器?不妥协的电压隔离从本质上讲,KLV15002优先考虑安全性。输入到输出隔离达到3750Vrms(后缀为V的型号为5000Vrms),确保即使在高压情况下,敏感的低功耗
    克里雅半导体科技 2024-11-29 16:15 119浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 70浏览
  • 光耦合器作为关键技术组件,在确保安全性、可靠性和效率方面发挥着不可或缺的作用。无论是混合动力和电动汽车(HEV),还是军事和航空航天系统,它们都以卓越的性能支持高要求的应用环境,成为现代复杂系统中的隐形功臣。在迈向更环保技术和先进系统的过程中,光耦合器的重要性愈加凸显。1.混合动力和电动汽车中的光耦合器电池管理:保护动力源在电动汽车中,电池管理系统(BMS)是最佳充电、放电和性能监控背后的大脑。光耦合器在这里充当守门人,将高压电池组与敏感的低压电路隔离开来。这不仅可以防止潜在的损坏,还可以提高乘
    腾恩科技-彭工 2024-11-29 16:12 117浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 63浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦