RAM较小的MCU必须会这个技巧!结构体内存对齐解析

嵌入式ARM 2020-05-26 00:00


为什么要内存对齐

虽然所有的变量最后都会保存到特定的地址内存中去,但是相应的内存空间必须满足内存对齐的要求,主要基于存在以下两个原因:

  • 硬件平台原因:并不是所有的平台都能够访问任意地址上的任意数据,某些硬件平台只能够访问对齐的地址,否则就会出现硬件异常错误。

  • 性能原因:如果数据存放在未对齐的内存空间中,则处理器在访问变量时要做两次次内存访问,而对齐的内存访问只需要一次。

上述两个原因,第一个原因从字面意思上就能够理解,那第二个原因是什么意思呢?假定现在有一个 32 位微处理器,那这个处理器访问内存都是按照 32 位进行的,也就是说一次性读取或写入都是四字节。假设现在有一个处理器要读取一个大小为 4 字节的变量,在内存对齐的情况下,处理器是这样进行读取的:

那如果数据存储没有按照内存对齐的方式进行的话,处理器就会这样进行读取:

对比内存对齐和内存没有对齐两种情况我们可以明显地看到:在内存对齐的情况下,只需要两个个步骤就可以将数据读出来,首先处理器找到要读出变量所在的地址,然后将数据读出来。在内存没有对齐的情况下,却需要以下四个步骤才能够将数据取出来:

  • 处理器找到要读取变量所在的地址,也就是图中红色方块所在位置。

  • 由于此时内存未对齐,处理器是 32 位的,一次性读取或者写入都是 4 字节,所以需要将 0-3 地址内的数据和 4-7 地址里的数据都取出来。

  • 由于 0 - 3 地址范围的 0 地址里的数据不属于我们要读取的数据,因此将这一小块的数据进行移位,把 0 地址里的数据移出去;同理, 4 - 7 地址范围里的数据也要进行移位,保留 4 地址里的数据

  • 合并移位之后的数据,得出结果

通过上述的分析,我们可以知道内存对齐能够提升性能,这也是我们要进行内存对齐的原因之一。

结构体内存对齐

对齐原则

在明白了为何要进行内存对齐之后,我们来分析结构体内的内存对齐,在进行具体的实例分析前,需要给出结构体内存对齐的两条基本原则。

  • 结构体各成员变量的内存空间的首地址必须是“对齐系数”和“变量实际长度”中较小者的整数倍。

  • 对于结构体来说,在其各个数据都对齐之后,结构体本身也需要对齐,即结构体占用的总大小应该为“对齐系数”和“最大数据长度”中较小值的整数倍。

在给定了基本原则之后,我们通过一个例子来说明结构体的内存对齐,假定当前的处理器是 32 位的,对齐系数为4。在这里笔者选择在上一篇文章中涉及到的一个结构体进行解析,结构体如下:

   
  1. struct data_test

  2. {

  3. char a; /*本身大小 1 字节*/

  4. short b; /*本身大小 2 字节*/

  5. char c[2]; /*数组单个成员 1 字节*/

  6. double d; /*本身大小 8 字节*/

  7. char e; /*本身大小 1 字节*/

  8. int f; /*本身大小 4 字节*/

  9. char g; /*本身大小 1 字节*/

  10. }data;

根据我们刚刚给出的第一条对齐原则,先确定出每个变量的存储位置,变量存储方式是小端对齐,为了看起来更加形象,以 16 个字节作为一行来表示变量的存储位置(这里所说的存储位置是指相对于结构体起始地址的偏移)。

根据第一条规则:各成员的内存空间的首地址必须是对齐系数和变量本身大小较小者的整数倍,这里对齐系数是 4,因此变量 a 、数组 c 、变量 e 、变量 g 的首地址需要满足 1 的倍数,变量 b 的首地址需要满足 2 的倍数,变量 d 的首地址需要满足 4 的倍数,变量 f 的首地址需要 4 的倍数。所以也就有了上述表格中的变量存储位置。那既然结构体内的成员都已经对齐了,为什么还存在第二条原则呢?也就是说为什么结构体内的成员已经内存对齐了,结构体本身还需要对齐?下面通过一个结构体数组来说明,比如我们定义了这样一个结构体数组:

   
  1. struct data_test

  2. {

  3. char a; /*本身大小 1 字节*/

  4. short b; /*本身大小 2 字节*/

  5. char c[2]; /*数组单个成员 1 字节*/

  6. double d; /*本身大小 8 字节*/

  7. char e; /*本身大小 1 字节*/

  8. int f; /*本身大小 4 字节*/

  9. char g; /*本身大小 1 字节*/

  10. }data[2];

我们在放置成员存储位置的时候,data[0] 按照成员对齐的原则依次存放,放到最后一个结构体成员时,如果不考虑结构体本身的对齐,按照数组元素是紧挨着存放的原则,那这个结构体数组应该是按照下图进行存储的:

从上图中我们可以看到虽然 data[0] 中的成员都对齐了,但是由于结构体本身的不对齐,导致 data[1] 中的好多成员都不对齐了,因此,在完成了结构体成员的内存对齐后,我们还需要依据第二条原则:结构体占用的总大小应该为“对齐系数”和“最大数据长度”中较小值的整数倍,来对结构体本身进行对齐,因此正确的结构体数组的存储位置应该如下图所示:

这里需要注意的是,上述原则针对的是结构体占用的总大小,而不是结构体的首地址,所以,在结构体本身还没有对齐的情况下,data[0] 的大小是 25 个字节,但是根据上述原则,在对齐系数为 4 的前提下,结构体大小应该是 4 的整数倍,所以要对结构体进行所占内存进行填充,因此:data[0] 最终的大小是 28 字节,结构体数组 data 的大小为 56 字节

结构体内成员顺序

通过上述分析我们可以很容易就想到,根据第一条原则,那么结构体成员定义的先后顺序会对最终结构体占用的内存造成影响,比如现在调整结构体 data 内成员的定义顺序,如下:

   
  1. struct data_test

  2. {

  3. char a; /*本身大小 1 字节*/

  4. char c[2]; /*数组单个成员 1 字节*/

  5. char e; /*本身大小 1 字节*/

  6. char g; /*本身大小 1 字节*/

  7. short b; /*本身大小 2 字节*/

  8. int f; /*本身大小 4 字节*/

  9. double d; /*本身大小 8 字节*/

  10. }data;

改变结构体成员顺序后的存储位置如下:

通过图片就可以看到只有一块蓝色的填充区域,在成员对齐之后,结构体大小是 20 ,已经是 4 的整数倍,已经无须再做填充,所以调整顺序后的结构体大小为 20 个字节,相比于之前没有改变顺序之前整整减少了 8 个字节,也可以看出结构体成员的定义顺序也是需要关注的一个问题,关于结构体内成员定义的顺序应该遵循这样一个原则:按照长度递增的顺序依次定义各个成员

如何设定对齐系数

查看默认对齐系数

在上述我们对结构体内存对齐的分析中,我们都是假定对齐系数为 4 ,实际上对于编译器来说都有默认的对齐系数,我们可以输入伪指令,然后以报警信息的方式显示当前的对齐系数:

   
  1. #pragma pack(show)

设置对齐系数

   
  1. #pragma pack(1) /*设置一字节对齐*/

  2. struct data_test

  3. {

  4. char a;

  5. short b;

  6. char c[2];

  7. double d;

  8. char e;

  9. int f;

  10. char g;

  11. } data;

  12. #pragma pack()/*取消一字节对齐,恢复默认对齐系数*/

在这里,设置1字节对齐其实也就相当于不进行内存对齐,因为任何地址都可以是 1 的整数倍,最后,需要注意的是使用这种方法设置字节对齐,要在想要取消一字节对齐的地方使用伪指令 #pragma pack() 取消一字节对齐,否则后面所定义的结构体会继续采用刚刚所设置的对齐方式。除了采用上述这样设置一字节对齐的方式取消内存对齐,也可以采用下面的方式取消字节对齐:

   
  1. struct __attribute__((packed)) data_test2

  2. {

  3. char a;

  4. short b;

  5. char c[2];

  6. double d;

  7. char e;

  8. int f;

  9. char g;

  10. }data;

这种方式相对于上述方法来讲,不用执行取消操作,作用域只是本结构体,不会影响其他结构体的对齐方式。最后,取消字节对齐的结构体(或者说是按照 1 字节对齐的结构体)data 的大小就是 19 个字节,即将结构体内的所有成员的字节大小相加即可。

总结

了解结构体的内存对齐,从而在定义结构体成员时按照最优的顺序进行定义,对于 RAM 资源比较紧缺的 MCU 来讲,也是非常重要的。同时,在笔者的上篇文章《union 的概念及在嵌入式编程中的应用中》,所讲到的运用 union 和 struct 嵌套来便捷地解析数据,也应该取消字节对齐(因为上篇文章最后一个例子结构体成员大小都是一个字节,内存对齐取消与否都不影响成员的存储位置,所以没取消)。

参考资料 [1] https://aticleworld.com/data-alignment-and-structure-padding-bytes/

[2] https://blog.51cto.com/zhangyu/673792

本文授权转载自公众号“wenzi嵌入式软件”,作者wenzid

-END-




推荐阅读



【01】工程师:这道题80%初学者都没做对!你确定搞懂结构体内存对齐了?
【02】C语言之结构体就这样被攻克了!(绝对值得收藏的文章)
【03】为什么C语言函数不能返回数组,却可以返回结构体
【04】C语言结构体(struct)最全的讲解(万字干货)
【05】c语言基础语法——结构体


免责声明:整理文章为传播相关技术,版权归原作者所有,如有侵权,请联系删除
嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 143浏览
  • 学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&
    youyeye 2024-11-30 14:30 85浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 109浏览
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 170浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 90浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 141浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 114浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 126浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 142浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 103浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 138浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 107浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 92浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦