视觉卷不动了,来看看分子领域?全球首个分子图像自监督学习框架ImageMol来了

OpenCV学堂 2022-11-24 17:14

点击上方↑↑↑OpenCV学堂”关注我

来源:公众号 机器之心 授权


分子是维持物质化学稳定性的最小单位。对分子的研究,是药学、材料学、生物学、化学等众多科学领域的基础性问题。



分子的表征学习(Molecular Representation Learning)是近年来非常热门的方向,目前可分为诸多门派:


  • 计算药学家说:分子可以表示为一串指纹,或者描述符,如上海药物所提出的 AttentiveFP,是这方面的杰出代表。

  • NLPer 说:分子可以表示为 SMILES(序列),然后当作自然语言处理,如百度的 X-Mol,是这方面的杰出代表。

  • 图神经网络研究者说:分子可以表示为一个图(Graph),也就是邻接矩阵,然后使用图神经网络处理,如腾讯的 GROVER, MIT 的 DMPNN,CMU 的 MOLCLR 等方法,都是这方面的杰出代表。


但是,目前的表征方法仍存在一些局限性。比如,序列表征缺乏分子的显式结构信息,现有图神经网络的表达能力仍有诸多局限(中科院计算所沈华伟老师对此有论述,见沈老师报告“图神经网络的表达能力”)。


有趣的是,在高中化学学习分子的时候,我们看到的是分子的图像,化学家在设计分子时,也是对照分子图像进行观察和思考。一个自然的想法油然而生:“为什么不直接用分子图像来表征分子呢?”如果可以直接用图像来表征分子,那 CV(计算机视觉)里面的十八般武艺,不都可以用来研究分子吗?



说干就干,CV 里面的模型那么多,拿过来学习分子呗?打住,还有一个重要的问题——数据!特别是带标签的数据!在 CV 领域,数据标注这件事似乎并不困难。对于图像识别或者情感分类这些 CV 和 NLP 的经典问题来说,一个人平均能标注 800 条数据。但是在分子领域,只能通过湿实验和临床实验的方式评估分子性质,因此带标签的数据非常稀缺。


基于此,来自湖南大学的研究者们提出了全球首个分子图像的无监督学习框架 ImageMol,利用大规模无标签分子图像数据进行无监督预训练,为分子性质与药物靶点理解提供了新范式,证明了分子图像在智能药物研发领域具有巨大的潜力。该成果以 “Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework” 为题发表于国际顶级期刊《Nature Machine Intelligence》。此次计算机视觉与分子领域交叉取得的成功展示了利用计算机视觉技术理解分子性质与药物靶点机制的巨大潜力,并为分子领域的研究提供了新的机遇。



论文链接:https://www.nature.com/articles/s42256-022-00557-6.pdf


ImageMol 模型结构


ImageMol 的整体架构如下图所示,总共分为三部分:



(1) 设计一个分子编码器 ResNet18(浅蓝色),能够从约 1000 万张分子图像中提取潜在特征 (a) 。


(2)考虑分子图像中的化学知识和结构信息,利用五个预训练策略(MG3C、MRD、JPP、MCL、MIR)来优化分子编码器的潜在表示 (b) 。具体来说为:


① MG3C(Muti-granularity chemical clusters classification 多粒度化学簇分类):其中的结构分类器 Structure classifier(深蓝色)用于预测分子图像中的化学结构信息;

② MRD(Molecular rationality discrimination 分子合理性判别器):其中的合理性分类器 Rationality classifier(绿色),它用于区分合理与不合理的分子;

③ JPP(Jigsaw puzzle predicition 拼图预测):其中的拼图分类器 Jigsaw classifier(浅灰色)用于预测分子的合理排列;

④ MCL(MASK-based contrastive learning 基于 MASK 的对比学习):其中的对比分类器 Contrastive classifier(深灰色)用于最大化原始图像和 mask 图像之间的相似性;

⑤ MIR(Molecular image reconstruction 分子图像重建):其中的生成器 Generator(黄色)用于将潜在特征恢复分子图像,判别器 Discriminator(紫色)用于区分真实图像和生成器生成的假的分子图像。


(3)在下游任务中对预处理的分子编码器进行微调,以进一步提高模型性能 (c) 。



基准评估


作者首先使用 8 种药物发现的基准数据集来评估 ImageMol 的性能,并且使用两种最流行的拆分策略(scaffold split 与 random scaffold split)来评估 ImageMol 在所有基准数据集上的性能。在分类任务中,利用受试者工作特性(Receiver Operating Characteristic, ROC)曲线以及曲线下的面积(Area Under Curve, AUC)来评估,从实验结果可以看出,ImageMol 均能得到较高的 AUC 值 (图 a) 。



ImageMol 与预测分子图像的经典卷积神经网络框架 Chemception 在 HIV 和 Tox21 的检测结果对比 (图 b) ,ImageMol 的 AUC 值更高。本文进一步评估了 ImageMol 在预测五种主要代谢酶(CYP1A2, CYP2C9, CYP2C19, CYP2D6 和 CYP3A4)药物代谢方面的性能。图 c 显示,ImageMol 在五种主要药物代谢酶的抑制剂与非抑制剂的预测中,与三种最先进的基于分子图像的表示模型(Chemception46、ADMET-CNN12 和 QSAR-CNN47)相比,获得了更高的 AUC 值(范围从 0.799 到 0.893)。




本文进一步将 ImageMol 的性能与三种最先进的分子表示模型进行了比较,如图 d、e 所示。ImageMol 与使用随机骨架划分的基于指纹的模型(如 AttentiveFP)、基于序列的模型(如 TF_Robust)和基于图的模型(如 N-GRAM、GROVER 和 MPG)相比具有更好的性能。此外,与传统的基于 MACCS 的方法和基于 FP4 的方法相比,ImageMol 在 CYP1A2,CYP2C9,CYP2C19,CYP2D6 和 CYP3A4 上实现了更高的 AUC 值(图 f)。



ImageMol 与基于序列的模型(包括 RNN_LR、TRFM_LR、RNN_MLP、TRFM_MLP、RNN_RF、TRFM_RF 和 CHEM-BERT)和基于图的模型(包括 MolCLRGIN、MolCLRGCN 和 GROVER)相比,如图 g 所示,ImageMol 在 CYP1A2、CYP2C9、CYP2C19、CYP2D6、CYP3A4 上实现了更好的 AUC 性能。



在以上 ImageMol 与其他先进的模型对比中,可以看出 ImageMol 的优越性。


自新冠疫情爆发以来,我们迫切需要为新冠疫情制定有效的抗病毒治疗策略。因此,作者在该方面对 ImageMol 做了相应的评估。


对 13 个 SARS-CoV-2 靶点的抗病毒活性进行预测


ImageMol 对现如今关注的热点病毒 SARS-CoV-2 进行了预测实验,在 13 个 SARS-CoV-2 生物测定数据集中,ImageMol 实现了 72.6% 至 83.7% 的高 AUC 值。图 a 揭示了通过 ImageMol 鉴定的潜在特征,它在 13 个靶点(target)或终点(endpoints)活性和无活性的抗 SARS-CoV-2 上很好的聚集,且 AUC 值均比另一种模型 Jure’s GNN 要高 12% 以上  ,体现出该模型的高精度和很强的泛化性。



识别抗 SARS-CoV-2 抑制剂


对药物分子研究关乎最直接的实验来了,利用 ImageMol 直接识别病毒抑制剂分子!通过 ImageMol 框架下 3CL 蛋白酶(已被证实是治疗 COVID-19 的有希望的治疗发展靶点)抑制剂与非抑制剂数据集的分子图像表示,该研究发现 3CL 抑制剂和非抑制剂在 t-SNE 图中很好地分离,如下图 b 。


另外,ImageMol 鉴定出 16 种已知 3CL 蛋白酶抑制剂中的 10 种,并将这 10 种药物可视化到图中的包埋空间(成功率 62.5%),表明在抗 SARS-CoV-2 药物发现中具有较高的泛化能力。使用 HEY293 测定来预测抗 SARS-CoV-2 可再利用药物时,ImageMol 成功预测了 70 种药物中的 42 种(成功率为 60%),这表明 ImageMol 在推断 HEY293 测定中的潜在候选药物方面也具有很高的推广性。下图 c 展示了 ImageMol 在 DrugBank 数据集上发现 3CL 潜在抑制剂的药物。图 d 展示了 ImageMol 发现的 3CL 抑制剂的分子结构。



注意力可视化


ImageMol 可以从分子图像表示中获取化学信息的先验知识,包括 = O 键、-OH 键、-NH3 键和苯环。图 b 和 c 为 ImageMol 的 Grad-CAM 可视化的 12 个示例分子。这表示 ImageMol 同时准确地对全局 (b) 和局部 (c) 结构信息进行注意捕获,这些结果使研究人员能够在视觉上直观地理解分子结构是如何影响性质和靶点。



OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  • 概述 说明(三)探讨的是比较器一般带有滞回(Hysteresis)功能,为了解决输入信号转换速率不够的问题。前文还提到,即便使能滞回(Hysteresis)功能,还是无法解决SiPM读出测试系统需要解决的问题。本文在说明(三)的基础上,继续探讨为SiPM读出测试系统寻求合适的模拟脉冲检出方案。前四代SiPM使用的高速比较器指标缺陷 由于前端模拟信号属于典型的指数脉冲,所以下降沿转换速率(Slew Rate)过慢,导致比较器检出出现不必要的问题。尽管比较器可以使能滞回(Hysteresis)模块功
    coyoo 2024-12-03 12:20 170浏览
  •         温度传感器的精度受哪些因素影响,要先看所用的温度传感器输出哪种信号,不同信号输出的温度传感器影响精度的因素也不同。        现在常用的温度传感器输出信号有以下几种:电阻信号、电流信号、电压信号、数字信号等。以输出电阻信号的温度传感器为例,还细分为正温度系数温度传感器和负温度系数温度传感器,常用的铂电阻PT100/1000温度传感器就是正温度系数,就是说随着温度的升高,输出的电阻值会增大。对于输出
    锦正茂科技 2024-12-03 11:50 141浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2024-12-02 10:40 143浏览
  • 遇到部分串口工具不支持1500000波特率,这时候就需要进行修改,本文以触觉智能RK3562开发板修改系统波特率为115200为例,介绍瑞芯微方案主板Linux修改系统串口波特率教程。温馨提示:瑞芯微方案主板/开发板串口波特率只支持115200或1500000。修改Loader打印波特率查看对应芯片的MINIALL.ini确定要修改的bin文件#查看对应芯片的MINIALL.ini cat rkbin/RKBOOT/RK3562MINIALL.ini修改uart baudrate参数修改以下目
    Industio_触觉智能 2024-12-03 11:28 110浏览
  • 11-29学习笔记11-29学习笔记习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-02 23:58 92浏览
  • 作为优秀工程师的你,已身经百战、阅板无数!请先醒醒,新的项目来了,这是一个既要、又要、还要的产品需求,ARM核心板中一个处理器怎么能实现这么丰富的外围接口?踌躇之际,你偶阅此文。于是,“潘多拉”的魔盒打开了!没错,USB资源就是你打开新世界得钥匙,它能做哪些扩展呢?1.1  USB扩网口通用ARM处理器大多带两路网口,如果项目中有多路网路接口的需求,一般会选择在主板外部加交换机/路由器。当然,出于成本考虑,也可以将Switch芯片集成到ARM核心板或底板上,如KSZ9897、
    万象奥科 2024-12-03 10:24 96浏览
  • RDDI-DAP错误通常与调试接口相关,特别是在使用CMSIS-DAP协议进行嵌入式系统开发时。以下是一些可能的原因和解决方法: 1. 硬件连接问题:     检查调试器(如ST-Link)与目标板之间的连接是否牢固。     确保所有必要的引脚都已正确连接,没有松动或短路。 2. 电源问题:     确保目标板和调试器都有足够的电源供应。     检查电源电压是否符合目标板的规格要求。 3. 固件问题: &n
    丙丁先生 2024-12-01 17:37 114浏览
  • TOF多区传感器: ND06   ND06是一款微型多区高集成度ToF测距传感器,其支持24个区域(6 x 4)同步测距,测距范围远达5m,具有测距范围广、精度高、测距稳定等特点。适用于投影仪的无感自动对焦和梯形校正、AIoT、手势识别、智能面板和智能灯具等多种场景。                 如果用ND06进行手势识别,只需要经过三个步骤: 第一步&
    esad0 2024-12-04 11:20 103浏览
  • 《高速PCB设计经验规则应用实践》+PCB绘制学习与验证读书首先看目录,我感兴趣的是这一节;作者在书中列举了一条经典规则,然后进行详细分析,通过公式推导图表列举说明了传统的这一规则是受到电容加工特点影响的,在使用了MLCC陶瓷电容后这一条规则已经不再实用了。图书还列举了高速PCB设计需要的专业工具和仿真软件,当然由于篇幅所限,只是介绍了一点点设计步骤;我最感兴趣的部分还是元件布局的经验规则,在这里列举如下:在这里,演示一下,我根据书本知识进行电机驱动的布局:这也算知行合一吧。对于布局书中有一句:
    wuyu2009 2024-11-30 20:30 142浏览
  • 最近几年,新能源汽车愈发受到消费者的青睐,其销量也是一路走高。据中汽协公布的数据显示,2024年10月,新能源汽车产销分别完成146.3万辆和143万辆,同比分别增长48%和49.6%。而结合各家新能源车企所公布的销量数据来看,比亚迪再度夺得了销冠宝座,其10月新能源汽车销量达到了502657辆,同比增长66.53%。众所周知,比亚迪是新能源汽车领域的重要参与者,其一举一动向来为外界所关注。日前,比亚迪汽车旗下品牌方程豹汽车推出了新车方程豹豹8,该款车型一上市就迅速吸引了消费者的目光,成为SUV
    刘旷 2024-12-02 09:32 138浏览
  • 当前,智能汽车产业迎来重大变局,随着人工智能、5G、大数据等新一代信息技术的迅猛发展,智能网联汽车正呈现强劲发展势头。11月26日,在2024紫光展锐全球合作伙伴大会汽车电子生态论坛上,紫光展锐与上汽海外出行联合发布搭载紫光展锐A7870的上汽海外MG量产车型,并发布A7710系列UWB数字钥匙解决方案平台,可应用于数字钥匙、活体检测、脚踢雷达、自动泊车等多种智能汽车场景。 联合发布量产车型,推动汽车智能化出海紫光展锐与上汽海外出行达成战略合作,联合发布搭载紫光展锐A7870的量产车型
    紫光展锐 2024-12-03 11:38 126浏览
  • 戴上XR眼镜去“追龙”是种什么体验?2024年11月30日,由上海自然博物馆(上海科技馆分馆)与三湘印象联合出品、三湘印象旗下观印象艺术发展有限公司(下简称“观印象”)承制的《又见恐龙》XR嘉年华在上海自然博物馆重磅开幕。该体验项目将于12月1日正式对公众开放,持续至2025年3月30日。双向奔赴,恐龙IP撞上元宇宙不久前,上海市经济和信息化委员会等部门联合印发了《上海市超高清视听产业发展行动方案》,特别提到“支持博物馆、主题乐园等场所推动超高清视听技术应用,丰富线下文旅消费体验”。作为上海自然
    电子与消费 2024-11-30 22:03 107浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦