用于活体光声成像的高阶多波段AlNPMUT

原创 MEMS 2022-11-24 00:00

据麦姆斯咨询报道,近日,上海理工大学、中国科学院上海微系统与信息研究所、上海大学的研究人员组成的团队在Microsystems & Nanoengineering期刊上发表了题为“Beyond fundamental resonance mode: high-order multi-band ALN PMUT for in vivo photoacoustic imaging”的论文,提出了一种应用于光声(PA)成像系统的高阶多波段氮化铝(AlN)压电式微机械超声换能器(PMUT)阵列,以提高其成像分辨率。在体模实验中,与基频谐振模式下的分辨率相比,三阶和四阶谐振模式下的分辨率分别提高了38.7%和76.9%,表明此次提出的AlN PMUT阵列在提高光声成像分辨率应用方面具有巨大的潜力。

自19世纪80年代Alexander Bell报道了光声效应以来,这一现象已在气体传感和生物医学成像等各个领域得到研究。光声成像是一种由激光激发和超声接收组成的物理过程。当粒子被短脉冲激光束照射时,由于粒子的光吸收,会发生瞬时热膨胀和收缩。膨胀和收缩产生可以被超声换能器接收的声波。随着光声成像(PAI)成为21世纪新兴和快速发展的成像技术,研究人员利用光声成像提供了多样化生物医学信息,并帮助生物和临床科学家更好地了解生物组织的某些维度。因此,光声成像已成为一个新兴的研究领域,通过揭示功能和形态学信息来补充超声成像(USI)。

光声成像系统基于最先进的超声换能器开发而成,具有高空间分辨率、更大的成像深度、丰富的光学对比度,以及更小、更快和更便宜等特点。光声成像对于乳腺癌、前列腺癌、胰腺癌和结直肠癌等早期癌症检测是有效的。由于激发激光在人体组织中的强烈衰减,图像深度仍被限制在5cm以内, 这使得系统很难诊断人体内部的深层信息,例如内脏中的血管。因此,具有微型化技术的内窥镜成像受到高度关注。传统的块体型压电换能器在内窥镜中的使用受到其尺寸和制造工艺的限制。幸运的是,微机电系统(MEMS)技术可以为内窥镜光声成像应用提供微型化换能器的解决方案。基于MEMS技术的超声换能器可以分为两种类型:压电式微机械超声换能(PMUT)和电容式微机械超声换能器(CMUT)。CMUT具有高灵敏度和可调谐宽带宽的优点,然而,它们需要高偏置电压或其他电压降低技术,这可能会在生物医学活体成像应用中造成安全风险。相比之下,PMUT由于其无源性,在活体应用中更灵活、更安全。

PMUT通常根据工作模式分为两类:厚度扩展模式(TEM)和弯曲振动模式(FVM)。基于陶瓷锆钛酸铅(PZT)、聚偏二氟乙烯(PVDF)、单晶铌镁酸铅-钛酸铅(PMN-PT)和铌酸锂(LiNbO3)等不同类型的TEM PMUT已经被制造并应用于光声成像中。基于单晶PMN-PT和陶瓷PZT的TEM PMUT由于PZT和PMN-PT的优异压电常数而兼具高频率和高灵敏度。然而,TEM PMUT在光声成像应用中存在成像速度低的缺点。基于PVDF的PMUT具有带宽宽的优点,但PVDF压电常数非常低,因此必须将换能器制造得很大,以确保其具有足够的灵敏度来检测光声信号。基于LiNbO3、PMN-PT或PZT薄膜的PMUT可以被制造成更小的尺寸,但其工艺与CMOS技术不兼容。与TEM PMUT相比,FVM PMUT具有相对较低的声阻抗,并且更容易集成多个频段。此外,FVM PMUT更容易被制造和形成更高灵敏度、更大带宽和更多功能的阵列。在过去的几十年中,ZnO、PZT和AlN薄膜被广泛应用于制造FVM PMUT。与ZnO和PZT相比,AlN具有更好的化学和热稳定性以及生物安全性,并且AlN PMUT器件制造工艺也与CMOS制造工艺兼容,这使得CMOS-MEMS单片换能器芯片成为可能。此外,对于FVM压电MEMS换能器,传感灵敏度与e3.1.f33.f(e3.1.f:压电常数,ϵ33.f:介电常数)成正比,因此,与PZT相比,AlN薄膜因其较小的介电常数而具有更高的灵敏度,成为制造FVM PMUT的首选。最近,基于AlN薄膜的FVM PMUT已被应用于超声成像、指纹识别和光声等领域。

在光声成像中,横向和轴向分辨率都会影响成像质量。横向分辨率由光学激发和超声检测的重叠性决定。轴向分辨率源于光声信号的半峰全宽(FWHM),并且与声探测器的带宽成正比。通常,光声信号具有宽带宽的短脉冲轮廓。为了获得高保真度的光声信号,必须使用具有宽带宽的声学传感器。因此,扩展超声换能器的带宽对于提高光声成像分辨率至关重要。

为了解决用于光声成像的FVM PMUT带宽较小的挑战,目前有两种方法来扩展超声换能器的带宽:将多个不同尺寸(不同谐振频率)的PMUT组合成一个阵列,以及设计具有多个谐振模式的矩形结构PMUT。

基于此,研究团队提出了一种应用于光声成像的圆形AlN PMUT阵列(如图1所示),该阵列利用PMUT的高阶谐振模式提高成像分辨率。图2(a)显示了提出的FVM PMUT阵列的制造工艺流程,他们制造了阵列并将其应用于光声成像系统中。通过激光多普勒振动测量、电阻抗测量和光声信号传感,他们对制造的PMUT的多频段谐振特性进行了表征和分析。基频和三个高阶谐振带宽分别为2.2、8.8、18.5和48.2 kHz。在体模实验中,与基频谐振模式下的分辨率相比,三阶和四阶谐振模式下的分辨率分别提高了38.7%和76.9%。提出的AlN PMUT传感器阵列的高阶谐振模式为光声信号检测提供了更高的中心频率和更宽的带宽,从而提高了光声成像的分辨率。


图1 研究人员提出的AlN PMUT及其振型分析


图2 PMUT阵列的制造工艺流程及光声成像实验设计示意图


图3 样本的光声成像实验结果


图4 人手的活体光声成像表征

他们还利用AlN PMUT阵列的高阶谐振模式在人体手指关节上进行了活体光声成像实验测试,如图4所示。结果表明,该光声成像系统具有区分不同层段血管的能力,与实际解剖位置非常接近。综上,提出的高阶多波段AlN PMUT阵列在提高光声成像分辨率应用方面具有巨大的潜力。未来,团队的目标是制造和开发一种完整的将光纤、扫描仪和PMUT阵列完全集成的内窥镜。此外,具有特殊电极或结构设计的高阶PMUT可能会表现出更好的带宽性能,并可进一步探索其光声成像应用。

这项研究工作得到了国家自然科学基金(61874073)、上海市自然科学基金(19ZR1477000)、临港实验室(LG-QS-202202-05)、上海临床研究与试验中心(2022A0305-418-02)和浦江人才计划(19PJ1432300)的支持。

论文信息:
https://doi.org/10.1038/s41378-022-00426-7

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论
  • 一、引言无人机,作为近年来迅速崛起的新兴技术产物,正以前所未有的速度改变着众多行业的运作模式,从民用领域的航拍、物流,到工业领域的测绘、巡检,再到军事领域的侦察、打击等,无人机的身影无处不在。为了深入了解无人机的现状,本次调研综合了市场数据、行业报告、用户反馈等多方面信息,全面剖析无人机的发展态势。二、市场规模与增长趋势随着技术的不断进步和成本的逐渐降低,无人机市场呈现出爆发式增长。近年来,全球无人机市场规模持续扩大,预计在未来几年内仍将保持较高的增长率。从应用领域来看,消费级无人机市场依然占据
    Jeffreyzhang123 2024-12-27 17:29 201浏览
  • 在科技飞速发展的今天,汽车不再仅仅是一种交通工具,更是一个融合了先进技术的移动智能空间。汽车电子作为汽车产业与电子技术深度融合的产物,正以前所未有的速度推动着汽车行业的变革,为我们带来更加智能、安全、舒适的出行体验。汽车电子的发展历程汽车电子的发展可以追溯到上世纪中叶。早期,汽车电子主要应用于发动机点火系统和简单的电子仪表,功能相对单一。随着半导体技术的不断进步,集成电路被广泛应用于汽车领域,使得汽车电子系统的性能得到了显著提升。从电子燃油喷射系统到防抱死制动系统(ABS),从安全气囊到车载导航
    Jeffreyzhang123 2024-12-27 11:53 141浏览
  • 一、前言 回首2024,对于我而言,是充满挑战与收获的一年。在这一年里,我积极参与了论坛的众多活动,不仅拓宽了我的认知边界(有些东西不是你做不到,而是你想不到),还让我在实践中收获了宝贵的经验和。同时,多种多样的论坛活动让我们全方面的接受新东西,连接新知识,多种类型的的活动交织了你我的2024。在这里说一说对过去一年的活动经历,进行一次年终总结,并谈谈我的收获和感受,以及对2025年的展望。二、活动足迹(一)快速体验:机智云Gokit2.0开发板初体验 机智云Gokit2.0开发板的体验活动让大
    无言的朝圣 2024-12-27 14:50 95浏览
  • 在当今竞争激烈的商业世界中,供应链管理已成为企业生存与发展的核心竞争力之一。它就像一条无形的纽带,将供应商、制造商、分销商、零售商直至最终消费者紧密相连,确保产品和服务能够高效、顺畅地流转。今天,就让我们一同深入探索供应链管理的奥秘。供应链管理是什么简单来说,供应链管理是对从原材料采购、生产制造、产品配送直至销售给最终用户这一整个过程中,涉及的物流、信息流和资金流进行计划、协调、控制和优化的管理活动。它不仅仅是对各个环节的简单串联,更是一种通过整合资源、优化流程,实现整体效益最大化的管理理念和方
    Jeffreyzhang123 2024-12-27 17:27 120浏览
  • 采购与分销是企业运营中至关重要的环节,直接影响到企业的成本控制、客户满意度和市场竞争力。以下从多个方面介绍如何优化采购与分销:采购环节优化供应商管理供应商评估与选择:建立一套全面、科学的供应商评估体系,除了考虑价格因素,还要综合评估供应商的产品质量、交货期、信誉、研发能力、售后服务等。通过多维度评估,选择那些能够提供优质产品和服务,且与企业战略目标相契合的供应商。建立长期合作关系:与优质供应商建立长期稳定的合作关系,这种合作模式可以带来诸多好处。双方可以在信任的基础上进行深度沟通与协作,共同开展
    Jeffreyzhang123 2024-12-27 17:43 132浏览
  • 图森未来的“夺权之争”拉扯了这么久,是该画上句号了。大约9年前,侯晓迪、陈默、郝佳男等人共同创立了图森未来,初衷是以L4级别的无人驾驶卡车技术为全球物流运输行业赋能。此后,先后获得了5轮融资,累计融资额超过6.5亿美元,并于2021年成功在美国纳斯达克上市,成为全球自动驾驶第一股。好景不长,2023年市场屡屡传出图森未来裁员、退市的消息。今年1月份,图森未来正式宣布退市,成为了全球首个主动退市的自动驾驶公司。上市匆匆退市也匆匆,其背后深层原因在于高层的频繁变动以及企业的转型调整。最近,图森未来的
    刘旷 2024-12-27 10:23 71浏览
  • 引言工程师作为推动科技进步和社会发展的核心力量,在各个领域发挥着关键作用。为深入了解工程师的职场现状,本次调研涵盖了不同行业、不同经验水平的工程师群体,通过问卷调查、访谈等方式,收集了大量一手数据,旨在全面呈现工程师的职场生态。1. 工程师群体基本信息行业分布:调研结果显示,工程师群体广泛分布于多个行业,其中制造业占比最高,达到 90%,其次是信息技术、电子通信、能源等行业。不同行业的工程师在工作内容、技术要求和职业发展路径上存在一定差异。年龄与经验:工程师群体以中青年为主,30 - 45 岁年
    Jeffreyzhang123 2024-12-27 17:39 146浏览
  • 发明阶段(20世纪80年代至90年代)起源:当时ASIC设计成本高,周期长,流片失败率高,业界需要一种通用的半导体器件进行流片前测试和验证,可编程逻辑器件就此产生。诞生:1980年,Xilinx公司成立。1985年,Ross Freeman制造了第一片PFGA芯片XC2064,采用4输入,1输出的LUT和FF结合的基本逻辑单元。发展阶段(1992年至1999年)容量提升:FPGA容量不断上涨,芯片面积逐渐增大,为架构穿心提供空间,复杂功能可以实现。布线问题凸显:缩着芯片复杂度增加,片上资源的互连
    Jeffreyzhang123 2024-12-27 10:26 102浏览
  • 在当今这个数字化的时代,电子设备无处不在,从我们手中的智能手机、随身携带的笔记本电脑,到复杂的工业控制系统、先进的医疗设备,它们的正常运行都离不开一个关键的 “幕后英雄”—— 印刷电路板(Printed Circuit Board,简称 PCB)。PCB 作为电子设备中不可或缺的重要部件,默默地承载着电子元件之间的连接与信号传输,是整个电子世界的基石。揭开 PCB 的神秘面纱PCB,简单来说,就是一块由绝缘材料制成的板子,上面通过印刷、蚀刻等工艺形成了导电线路和焊盘,用于固定和连接各种电子元件。
    Jeffreyzhang123 2024-12-27 17:21 118浏览
  • 在当今科技飞速发展的时代,工业电子作为现代制造业的中流砥柱,正以前所未有的速度推动着各个行业的变革与进步。从汽车制造到航空航天,从智能家居到工业自动化,工业电子的身影无处不在,为我们的生活和生产带来了巨大的改变。工业电子的崛起与发展工业电子的发展历程可谓是一部波澜壮阔的科技进化史。追溯到上世纪中叶,电子技术开始逐渐应用于工业领域,最初主要是简单的电子控制装置,用于提高生产过程的自动化程度。随着半导体技术、计算机技术和通信技术的不断突破,工业电子迎来了爆发式的增长。集成电路的发明使得电子设备的体积
    Jeffreyzhang123 2024-12-27 15:40 132浏览
  • 在当今这个科技飞速发展的时代,物联网(IoT)已经不再是一个陌生的概念,它正以一种前所未有的速度改变着我们的生活和工作方式,像一股无形的力量,将世界紧密地连接在一起,引领我们步入一个全新的智能时代。物联网是什么简单来说,物联网就是通过感知设备、网络传输、数据处理等技术手段,实现物与物、人与物之间的互联互通和智能化管理。想象一下,你的家里所有的电器都能 “听懂” 你的指令,根据你的习惯自动调节;工厂里的设备能够实时监测自身状态,提前预警故障;城市的交通系统可以根据实时路况自动优化信号灯,减少拥堵…
    Jeffreyzhang123 2024-12-27 17:18 101浏览
  • 从教师的角度来看,麻省理工学院开除因学术造假的学生,这一决定是合理且必要的。首先,学术诚信是学术研究的基石。在学术界,真实性和原创性是至关重要的。学术造假不仅破坏了学术研究的公正性和准确性,还损害了学术领域的整体声誉。因此,对于任何形式的学术不端行为,包括伪造数据、抄袭等,学校都应采取严厉措施,以维护学术诚信。其次,学校对学生具有管理权,包括对学生的处分权。按照相关规定,学校有权对违纪学生进行警告、严重警告、记过、留校察看、勒令退学、开除学籍等处分。开除学籍是一种严厉的处分,通常适用于严重违反学
    curton 2024-12-28 21:49 85浏览
  • 起源与基础20 世纪 60 年代:可编程逻辑设备(PLD)的概念出现,一种被称为 “重构能力” 的芯片的可编程性吸引了许多工程师和学者。20 世纪 70 年代:最早的可编程逻辑器件 PLD 诞生,其输出结构是可编程的逻辑宏单元,它的硬件结构设计可由软件完成,设计比纯硬件的数字电路更灵活,但结构简单,只能实现小规模电路。诞生与发展20 世纪 80 年代中期:为弥补 PLD 只能设计小规模电路的缺陷,复杂可编程逻辑器件 CPLD 被推出,它具有更复杂的结构,能够实现较大规模的电路设计。1988 年:
    Jeffreyzhang123 2024-12-27 10:41 83浏览
  • 在科技飞速发展的今天,医疗电子作为一个融合了医学与电子技术的交叉领域,正以前所未有的速度改变着我们的医疗模式和健康生活。它宛如一颗璀璨的明珠,在医疗领域绽放出耀眼的光芒,为人类的健康福祉带来了诸多惊喜与变革。医疗电子的神奇应用医疗电子的应用范围极为广泛,深入到医疗的各个环节。在诊断方面,各种先进的医学成像设备堪称医生的 “火眼金睛”。X 光、CT、MRI 等成像技术,能够清晰地呈现人体内部的结构和病变情况,帮助医生准确地发现疾病。以 CT 为例,它通过对人体进行断层扫描,能够提供比传统 X 光更
    Jeffreyzhang123 2024-12-27 15:46 123浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦