【世说设计】如何在高压应用中利用反相降压-升压拓扑?

Excelpoint世健 2022-11-22 09:00


对于需要生成负电压轨的应用,可以考虑多种拓扑结构。但是,如果输入和/或输出端的绝对电压超过24 V,并且所需的输出电流可以达到几安,则充电泵和LDO负压稳压器将会因其低电流能力被弃用,而其电磁组件的尺寸,会导致反激式和Ćuk转换器解决方案变得相当复杂。


因此,在这种条件下,反相降压-升压拓扑能在高效率和小尺寸之间达成较好的折衷效果。要实现这些优势,必须充分了解高压条件下反相降压-升压拓扑的工作原理。在深入研究这些细节之前,我们首先简要回顾一下反相降压-升压拓扑。然后,比较反相降压-升压拓扑、降压拓扑和升压拓扑的关键电流路径。


三种基本的非隔离拓扑



反相降压-升压拓扑属于三种基本的非隔离开关拓扑。这些拓扑结构都包括一个控制晶体管(通常是一个MOSFET)、一个二极管(可能是肖特基二极管或有源二极管,即同步MOSFET),以及一个作为储能元件的功率电感。这三个元件之间的共同连接称为开关节点。功率电感相对于开关节点的位置决定拓扑结构。


如果线圈位于开关节点和输出之间,将构成DC-DC降压转换器,我们在下文中将其简称为降压转换器。或者,如果线圈位于输入和开关节点之间,将构成DC-DC升压转换器,简称为升压转换器。最后,如果线圈位于开关节点和地(GND)之间,则构成DC-DC反相降压-升压转换器。


在每个开关周期,甚至在连续导通模式(CCM)下,所有三种拓扑包含的组件和PCB走线的电流会快速变化,导致图1c、2c和3c突出显示的噪声转移。尽可能设计较小的热回路,以降低电路辐射的电磁干扰(EMI)。这里,需要提醒大家的是,热回路并非一定是电流循环流动的物理回路。实际上,在图1、图2和图3突出显示的各个回路中,由红色和蓝色突出显示的组件和线路构成热回路,其电流急剧转换并不会发生在相同方向。


图1. 属于热回路的组件和线路

——在CCM下运行的降压转换器。

图2. 属于热回路的组件和线路

——在CCM下运行的升压转换器。

图3. 属于热回路的组件和线路
——在CCM下运行的反相降压-升压转换器。


对于图3所示的CCM下运行的反相降压-升压转换器,热回路由CINC、Q1和D1构成。与降压和升压拓扑中的热回路相比,反相降压-升压拓扑的热回路包含位于输入和输出端的组件。在这些组件中,当控制MOSFET开启时,二极管(或者,如果使用同步MOSFET,则为体二极管)的反相恢复会生成最高的di/dt和EMI。由于需要全面的布局概念来考虑控制这两个方面的辐射EMI,所以您肯定不希望通过低估在高输入和/或输出电压条件下所需的反相降压-升压电感,通过过大的线圈电流纹波生成额外的辐射EMI。对于依赖自己所熟悉的升压拓扑来确定反相降压-升压电路电感的工程师来说,他们会面临这种风险,我们可以通过比较这两种拓扑看清这一点。


高压反相降压-升压拓扑的设计考量



升压拓扑和反相降压-升压拓扑生成的绝对输出电压的幅度要高于输入电压。但是,这两种拓扑之间存在差异,可以通过CCM中各自的占空比(在公式1和公式2中提供)来突出显示。请注意,这些都是一阶近似值,未考虑通过肖特基二极管和功率MOSFET时产生的压降等影响。

图4左侧显示的是在VIN = 12V时,这些占空比变化的一阶近似值与|VOUT|的关系。此外,假设在这两种情况下,电源线圈的开关频率(fSW)为1MHz,电感为1µH,则线圈电流纹波变化与VOUT的关系如图4右侧所示。

图4. 反相降压-升压和升压转换器中,
VIN = 12 V时占空比和线圈电流纹波与|VOUT|的关系。


从图4可以看出,与升压拓扑相比,|VOUT|更低时,反相降压-升压拓扑的占空比将会超过50%:分别为12V和24V。大家可以参考图5加深理解。

在升压拓扑中,电感位于输入和输出之间的路径中。因此,通过功率电感(VL)的电压会并入VIN,以提供所需的VOUT。但是,在反相降压-升压拓扑中,输出电压由VL提供。在这种情况下,功率电感必须为输出端提供更多电能,这就是|VOUT|更低时,占空比却已达到50%的原因。

图5. 线圈位置对获得输出电压的影响。


我们可以换种说法来表述,当|VOUT|/VIN比下降时,反相降压-升压拓扑的占空比降低速度要比升压拓扑慢。这是设计期间要考虑的一个重要事实,大家可以参考图6更好地了解其影响,其中已重绘占空比和线圈电流纹波的一阶近似值,但是是占空比与VIN之间的曲线。

图6. 反相降压-升压和升压转换器中,
|VOUT| = 48V时占空比和线圈电流纹波与VIN的关系


如图6所示,线圈电流纹波(ΔIL)与VIN和D成正比。在升压拓扑中,当VIN高于VOUT的一半时,占空比下降的速度快于VIN升高的速度,从VIN = 24V时的50%下降到VIN = 42V时的25%,如图6左侧图中的蓝色曲线所示。因此,对于图6右侧图所示的升压拓扑,在VIN高于24 V时,ΔIL会快速降低。

但是,对于反相降压-升压拓扑,如之前图4所示,当|VOUT|/VIN下降时,或者说,VIN增大,以提供固定的|VOUT|时,D非常缓慢地下降。图6左侧图中的绿色曲线显示了这一点,当VIN升高62.5%,从48V升高到78V时,占空比仅损失25%。由于D的下降不能抵消VIN的升高,线圈电流纹波会随VIN升高而大幅增加,如图6右侧图中的绿色曲线所示。

总体来说,与升压拓扑相比,反相降压-升压拓扑在高压条件下具有更高的线圈电流纹波,所以,在相同的fSW下,反相降压-升压拓扑需要更高的线圈值。我们可以借助图7,根据具体情况运用这一知识,当然,也是基于一阶近似值。

图7. 反相降压-升压转换器中,VOUT = –12V和–150V时占空比和线圈电流纹波与VIN的关系。


具有宽输入电压范围

和高输出电流的应用



我们考虑一下VIN = 7V至72V,VOUT = –12V,电流为5A的应用。在这个高输出电流下,我们选择使用同步控制器(LTC3896)来实现高效率。

  • 选择电感


在CCM中使用LTC3896时,建议将ΔIL保持在IOUT,MAX(例如,为5A时)的30%和70%之间。因此,我们在设计时,希望在整个输入电压范围内,ΔIL保持在1.5A和3.5A之间。此外,保持在这个推荐的范围内,也就是IOUT,MAX的30%和70%之间意味着比率最多能达到2.33,即70%除以30%,也就是输入电压范围内最高电流纹波与最低电流纹波之间的比率。如之前观察到的结果,对于反相降压-升压拓扑这类ΔIL会随VIN大幅变化的拓扑来说,这并不是一项简单的任务。

参考图7可以看出,当fSW = 1MHz,L = 1µH时,线圈电流纹波会在4.42A和10.29A之间变化,这个值太高了。要使最低ΔIL达到我们建议的下限1.5A或IOUT,MAX的30%,我们需要将现在的值4.42A降低三倍。我们可以将fSW设置为300 kHz,选择10µH电感,加上FREQ引脚上的47.5 kΩ电阻来实现这一点。实际上,这会使ΔIL降低,(1µH×1MHz)/(300kHz×10µH) =1/3。

由于这种降低,现在在整个输入电压范围内,线圈电流纹波(ΔIL)会在1.5A和3.4A之间(IOUT,MAX的30%和68%之间)变化。我们会获得 LTC3896 数据手册最后一页所提供的电路,如图8所示。

图8. LTC3896电路:VIN = 7V至72V,VOUT- = –12V,fSW = 300 kHz。


  • 使用LTspice验证我们的电感选择


对于线圈电流纹波,我们可以使用LTspice来仿真相同的LTC3896电路,如图9所示,以得出更准确的值。在图10中,VIN = 7V和72V时,ΔIL分别等于约1.45A和3.5A,这与之前根据图7以及降低fSW和L获取的一阶近似值一致。请注意,图10所示的线圈电流在流向RSENSE时,被视为是正电流。

使用LTspice仿真还有一个好处,可以确定运行期间的峰值线圈电流,即在最低输入电压为7V时的电流。


图9. 使用LTspice仿真的LTC3896电路。

图10. 测量VIN = 7V和72V时ΔIL的值,使用之前的LTspice电路获取峰值线圈电流。


如图10所示,应用的峰值线圈电流接近15.4A。获得这个值后,可以选择电流额定值足够高的功率电感。


设计采用更高的输出电压时



回到图7,在VIN的范围为12V至40V,VOUT = –150V这个假设情况下,其中也提供了电流纹波值。要注意的第一点是,在相同的fSW和L下,要得出更高的VOUT,电流纹波会大幅增高。如此高的ΔIL往往不可取,因此,与之前的示例相比,我们需要降低更多倍数,这意味着在相同的fSW下,采用更大的电感。

第二点是关于ΔIL在整个输入电压范围内的变化。在之前的示例中,VOUT = –12V,从最低纹波到最高纹波,ΔIL只增加了约2.33倍,输入电压却增长了超过10倍。在当前的示例中,VOUT = –150V,从最低电流纹波到最高电流纹波,ΔIL已经增大2.85倍,但输入电压只增大了3.33倍,从12V增大到40V。

还好,这种挑战只存在于CCM情况下。在断续导通模式(DCM)下,IOUT(MAX)的30%至70%这种限制不再适用。无论如何,在IOUT(MAX) = 5A时,要一步将VIN = 12V转换为VOUT = –150V还是太过费力。在任何情况下,要进行这种电压转换时,需要的输出电流一般很低,表示我们采用DCM模式。例如,LTC3863数据手册最后一页所示的电路就是如此,如图11所示。

因为DC电流低,所以在这些情况下使用非同步控制器(例如LTC3863)就足以提供不错的效率。关于在DCM下的这种LTC3863设计,LTspice提供的LTC3863电路是一个不错的工具,可用于优化线圈选择。

图11. LTC3863电路:VIN = 12V至40V,

VOUT- = –150V,fSW = 320kHz。


结论



反相降压-升压拓扑的热回路包含位于输入和输出端的组件,所以其布局难度要高于降压拓扑和升压拓扑。虽然与升压拓扑有些类似的地方,但在类似的应用条件下,反相降压-升压拓扑的电流纹波更高,这是因为线圈是其唯一的输出来源(如果我们忽略输出电容)。


对于具有高输入和/或输出电压的反相降压-升压应用,线圈电流纹波可能更高。为了控制电流纹波,与升压拓扑相比,反相降压-升压拓扑会使用更高的电感值。我们通过一个实例展示了如何根据应用条件来快速调节电感。





原文转自亚德诺半导体




世健也有自己的视频号啦~

快点击观看,进一步了解世健吧



立即扫码购买   


立即扫码了解详情   




关于世健

亚太区领先的元器件授权代理商


世健(Excelpoint)是完整解决方案的供应商,为亚洲电子厂商包括原设备生产商(OEM)、原设计生产商(ODM)和电子制造服务提供商(EMS)提供优质的元器件、工程设计及供应链管理服务。


世健总部位于新加坡,拥有超过30年历史。世健中国区总部设于香港,目前在中国拥有十多家分公司和办事处,遍及中国主要大中型城市。凭借专业的研发团队、顶尖的现场应用支持以及丰富的市场经验,世健在中国业内享有领先地位。






点击“阅读原文”,联系我们
↓↓↓

Excelpoint世健 世健系统(香港)有限公司是新加坡世健科技有限公司的子公司。作为亚太区领先的电子元器件分销商,世健为亚洲电子厂商,包括原设备生产商(OEM)、原设计生产商(ODM)和电子制造服务提供商(EMS)提供优质的元器件、工程设计及供应链管理服务。
评论
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 116浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 61浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 119浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 164浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 92浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 106浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 69浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 202浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 58浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 141浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦