首个目标检测扩散模型,比FasterR-CNN、DETR好,从随机框中直接检测

OpenCV学堂 2022-11-21 17:52

点击上方↑↑↑OpenCV学堂”关注我

来源:公众号 机器之心 授权

扩散模型不但在生成任务上非常成功,这次在目标检测任务上,更是超越了成熟的目标检测器。


扩散模型( Diffusion Model )作为深度生成模型中的新 SOTA,已然在图像生成任务中超越了原 SOTA:例如 GAN,并且在诸多应用领域都有出色的表现,如计算机视觉,NLP、分子图建模、时间序列建模等。


近日,来自香港大学的罗平团队、腾讯 AI Lab 的研究者联合提出一种新框架 DiffusionDet,将扩散模型应用于目标检测。据了解,还没有研究可以成功地将扩散模型应用于目标检测,可以说这是第一个采用扩散模型进行目标检测的工作。


DiffusionDet 的性能如何呢?在 MS-COCO 数据集上进行评估,使用 ResNet-50 作为骨干,在单一采样 step 下,DiffusionDet 实现 45.5 AP,显著优于 Faster R-CNN (40.2 AP), DETR (42.0 AP),并与 Sparse R-CNN (45.0 AP)相当。通过增加采样 step 的数量,进一步将 DiffusionDet 性能提高到 46.2 AP。此外,在 LVIS 数据集上,DiffusionDet 也表现良好,使用 swing - base 作为骨干实现了 42.1 AP。


  • 论文地址:https://arxiv.org/pdf/2211.09788.pdf

  • 项目地址 https://github.com/ShoufaChen/DiffusionDet


该研究发现在传统的目标检测里,存在一个缺陷,即它们依赖于一组固定的可学习查询。然后研究者就在思考:是否存在一种简单的方法甚至不需要可学习查询就能进行目标检测?


为了回答这一问题,本文提出了 DiffusionDet,该框架可以直接从一组随机框中检测目标,它将目标检测制定为从噪声框到目标框的去噪扩散过程。这种从 noise-to-box 的方法不需要启发式的目标先验,也不需要可学习查询,这进一步简化了目标候选,并推动了检测 pipeline 的发展。


如下图 1 所示,该研究认为 noise-to-box 范式类似于去噪扩散模型中的 noise-to-image 过程,后者是一类基于似然的模型,通过学习到的去噪模型逐步去除图像中的噪声来生成图像。


DiffusionDet 通过扩散模型解决目标检测任务,即将检测看作图像中 bounding box 位置 (中心坐标) 和大小 (宽度和高度) 空间上的生成任务。在训练阶段,将方差表(schedule)控制的高斯噪声添加到 ground truth box,得到 noisy box。然后使用这些 noisy box 从主干编码器(如 ResNet, Swin Transformer)的输出特征图中裁剪感兴趣区域(RoI)。最后,将这些 RoI 特征发送到检测解码器,该解码器被训练用来预测没有噪声的 ground truth box。在推理阶段,DiffusionDet 通过反转学习到的扩散过程生成 bounding box,它将噪声先验分布调整到 bounding box 上的学习分布。


方法概述


由于扩散模型迭代地生成数据样本,因此在推理阶段需要多次运行模型 f_θ。但是,在每一个迭代步骤中,直接在原始图像上应用 f_θ在计算上很困难。因此,研究者提出将整个模型分为两部分,即图像编码器和检测解码器,前者只运行一次以从原始输入图像 x 中提取深度特征表示,后者以该深度特征为条件,从噪声框 z_t 中逐步细化框预测。


图像编码器将原始图像作为输入,并为检测解码器提取其高级特征。研究者使用 ResNet 等卷积神经网络和 Swin 等基于 Transformer 的模型来实现 DiffusionDet。与此同时,特征金字塔网络用于为 ResNet 和 Swin 主干网络生成多尺度特征图。


检测解码器借鉴了 Sparse R-CNN,将一组 proposal 框作为输入,从图像编码器生成的特征图中裁剪 RoI 特征,并将它们发送到检测头以获得框回归和分类结果。此外,该检测解码器由 6 个级联阶段组成。


训练


在训练过程中,研究者首先构建了从真值框到噪声框的扩散过程,然后训练模型来反转这个过程。如下算法 1 提供了 DiffusionDet 训练过程的伪代码。


真值框填充。对于现代目标检测基准,感兴趣实例的数量通常因图像而异。因此,研究者首先将一些额外的框填充到原始真值框,这样所有的框被总计为一个固定的数字 N_train。他们探索了几种填充策略,例如重复现有真值框、连接随机框或图像大小的框。


框损坏。研究者将高斯噪声添加到填充的真值框。噪声尺度由如下公式(1)中的 α_t 控制,它在不同的时间步 t 中采用单调递减的余弦调度。


训练损失。检测解码器将 N_train 损坏框作为输入,预测 N_train 对类别分类和框坐标的预测。同时在 N_train 预测集上应用集预测损失(set prediction loss)。


推理


DiffusionDet 的推理过程是从噪声到目标框的去噪采样过程。从在高斯分布中采样的框开始,该模型逐步细化其预测,具体如下算法 2 所示。


采样步骤。在每个采样步骤中,将上一个采样步骤中的随机框或估计框发送到检测解码器,以预测类别分类和框坐标。在获得当前步骤的框后,采用 DDIM 来估计下一步骤的框。


框更新。为了使推理更好地与训练保持一致,研究者提出了框更新策略,通过用随机框替换非预期的框以使它们恢复。具体来说,他们首先过滤掉分数低于特定阈值的非预期的框,然后将剩余的框与从高斯分布中采样的新随机框连接起来。


一次解决(Once-for-all)。得益于随机框设计,研究者可以使用任意数量的随机框和采样步骤来评估 DiffusionDet。作为比较,以往的方法在训练和评估期间依赖于相同数量的处理框,并且检测解码器在前向传递中仅使用一次。


实验结果


在实验部分,研究者首先展示了 DiffusionDet 的 Once-for-all 属性,然后将 DiffusionDet 与以往在 MS-COCO 和 LVIS 数据集上成熟的检测器进行比较。 


DiffusionDet 的主要特性在于对所有推理实例进行一次训练。一旦模型经过训练,它就可以用于更改推理中框的数量和样本步骤数,如下图 4 所示。DiffusionDet 可以通过使用更多框或 / 和更多细化步骤来实现更高的准确度,但代价是延迟率更高。因此,研究者将单个 DiffusionDet 部署到多个场景中,并在不重新训练网络的情况下获得所需的速度 - 准确率权衡。


研究者将 DiffusionDet 与以往在 MS-COCO 和 LVIS 数据集上的检测器进行了比较,具体如下表 1 所示。他们首先将 DiffusionDet 的目标检测性能与以往在 MS-COCO 上的检测器进行了比较。结果显示,没有细化步骤的 DiffusionDet 使用 ResNet-50 主干网络实现了 45.5 AP,以较大的优势超越了以往成熟的方法,如 Faster R-CNN、RetinaNet、DETR 和 Sparse R-CNN。并且当主干网络的尺寸扩大时,DiffusionDet 显示出稳定的提升。


下表 2 中展示了在更具挑战性的 LVIS 数据集上的结果,可以看到,DiffusionDet 使用更多的细化步骤可以获得显著的增益。


更多实验细节请参阅原论文。

OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  • 一、SAE J1939协议概述SAE J1939协议是由美国汽车工程师协会(SAE,Society of Automotive Engineers)定义的一种用于重型车辆和工业设备中的通信协议,主要应用于车辆和设备之间的实时数据交换。J1939基于CAN(Controller Area Network)总线技术,使用29bit的扩展标识符和扩展数据帧,CAN通信速率为250Kbps,用于车载电子控制单元(ECU)之间的通信和控制。小北同学在之前也对J1939协议做过扫盲科普【科普系列】SAE J
    北汇信息 2024-12-11 15:45 74浏览
  • 近日,搭载紫光展锐W517芯片平台的INMO GO2由影目科技正式推出。作为全球首款专为商务场景设计的智能翻译眼镜,INMO GO2 以“快、准、稳”三大核心优势,突破传统翻译产品局限,为全球商务人士带来高效、自然、稳定的跨语言交流体验。 INMO GO2内置的W517芯片,是紫光展锐4G旗舰级智能穿戴平台,采用四核处理器,具有高性能、低功耗的优势,内置超微高集成技术,采用先进工艺,计算能力相比同档位竞品提升4倍,强大的性能提供更加多样化的应用场景。【视频见P盘链接】 依托“
    紫光展锐 2024-12-11 11:50 47浏览
  •         霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子
    锦正茂科技 2024-12-10 11:07 64浏览
  • 本文介绍Linux系统(Ubuntu/Debian通用)挂载exfat格式U盘的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。修改对应的内核配置文件# 进入sdk目录cdrk3562_linux# 编辑内核配置文件vi./kernel-5.10/arch/arm64/configs/rockchip_linux_defconfig注:不清楚内核使用哪个defc
    Industio_触觉智能 2024-12-10 09:44 90浏览
  • 时源芯微——RE超标整机定位与解决详细流程一、 初步测量与问题确认使用专业的电磁辐射测量设备,对整机的辐射发射进行精确测量。确认是否存在RE超标问题,并记录超标频段和幅度。二、电缆检查与处理若存在信号电缆:步骤一:拔掉所有信号电缆,仅保留电源线,再次测量整机的辐射发射。若测量合格:判定问题出在信号电缆上,可能是电缆的共模电流导致。逐一连接信号电缆,每次连接后测量,定位具体哪根电缆或接口导致超标。对问题电缆进行处理,如加共模扼流圈、滤波器,或优化电缆布局和屏蔽。重新连接所有电缆,再次测量
    时源芯微 2024-12-11 17:11 70浏览
  •         在有电流流过的导线周围会感生出磁场,再用霍尔器件检测由电流感生的磁场,即可测出产生这个磁场的电流的量值。由此就可以构成霍尔电流、电压传感器。因为霍尔器件的输出电压与加在它上面的磁感应强度以及流过其中的工作电流的乘积成比例,是一个具有乘法器功能的器件,并且可与各种逻辑电路直接接口,还可以直接驱动各种性质的负载。因为霍尔器件的应用原理简单,信号处理方便,器件本身又具有一系列的du特优点,所以在变频器中也发挥了非常重要的作用。  &nb
    锦正茂科技 2024-12-10 12:57 76浏览
  • 全球知名半导体制造商ROHM Co., Ltd.(以下简称“罗姆”)宣布与Taiwan Semiconductor Manufacturing Company Limited(以下简称“台积公司”)就车载氮化镓功率器件的开发和量产事宜建立战略合作伙伴关系。通过该合作关系,双方将致力于将罗姆的氮化镓器件开发技术与台积公司业界先进的GaN-on-Silicon工艺技术优势结合起来,满足市场对高耐压和高频特性优异的功率元器件日益增长的需求。氮化镓功率器件目前主要被用于AC适配器和服务器电源等消费电子和
    电子资讯报 2024-12-10 17:09 84浏览
  • 【萤火工场CEM5826-M11测评】OLED显示雷达数据本文结合之前关于串口打印雷达监测数据的研究,进一步扩展至 OLED 屏幕显示。该项目整体分为两部分: 一、框架显示; 二、数据采集与填充显示。为了减小 MCU 负担,采用 局部刷新 的方案。1. 显示框架所需库函数 Wire.h 、Adafruit_GFX.h 、Adafruit_SSD1306.h . 代码#include #include #include #include "logo_128x64.h"#include "logo_
    无垠的广袤 2024-12-10 14:03 69浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-10 16:13 105浏览
  • 天问Block和Mixly是两个不同的编程工具,分别在单片机开发和教育编程领域有各自的应用。以下是对它们的详细比较: 基本定义 天问Block:天问Block是一个基于区块链技术的数字身份验证和数据交换平台。它的目标是为用户提供一个安全、去中心化、可信任的数字身份验证和数据交换解决方案。 Mixly:Mixly是一款由北京师范大学教育学部创客教育实验室开发的图形化编程软件,旨在为初学者提供一个易于学习和使用的Arduino编程环境。 主要功能 天问Block:支持STC全系列8位单片机,32位
    丙丁先生 2024-12-11 13:15 49浏览
  • 我的一台很多年前人家不要了的九十年代SONY台式组合音响,接手时只有CD功能不行了,因为不需要,也就没修,只使用收音机、磁带机和外接信号功能就够了。最近五年在外地,就断电闲置,没使用了。今年9月回到家里,就一个劲儿地忙着收拾家当,忙了一个多月,太多事啦!修了电气,清理了闲置不用了的电器和电子,就是一个劲儿地扔扔扔!几十年的“工匠式”收留收藏,只能断舍离,拆解不过来的了。一天,忽然感觉室内有股臭味,用鼻子的嗅觉功能朝着臭味重的方向寻找,觉得应该就是这台组合音响?怎么会呢?这无机物的东西不会腐臭吧?
    自做自受 2024-12-10 16:34 136浏览
  • RK3506 是瑞芯微推出的MPU产品,芯片制程为22nm,定位于轻量级、低成本解决方案。该MPU具有低功耗、外设接口丰富、实时性高的特点,适合用多种工商业场景。本文将基于RK3506的设计特点,为大家分析其应用场景。RK3506核心板主要分为三个型号,各型号间的区别如下图:​图 1  RK3506核心板处理器型号场景1:显示HMIRK3506核心板显示接口支持RGB、MIPI、QSPI输出,且支持2D图形加速,轻松运行QT、LVGL等GUI,最快3S内开
    万象奥科 2024-12-11 15:42 66浏览
  • 智能汽车可替换LED前照灯控制运行的原理涉及多个方面,包括自适应前照灯系统(AFS)的工作原理、传感器的应用、步进电机的控制以及模糊控制策略等。当下时代的智能汽车灯光控制系统通过车载网关控制单元集中控制,表现特殊点的有特斯拉,仅通过前车身控制器,整个系统就包括了灯光旋转开关、车灯变光开关、左LED前照灯总成、右LED前照灯总成、转向柱电子控制单元、CAN数据总线接口、组合仪表控制单元、车载网关控制单元等器件。变光开关、转向开关和辅助操作系统一般连为一体,开关之间通过内部线束和转向柱装置连接为多,
    lauguo2013 2024-12-10 15:53 81浏览
  • 概述 通过前面的研究学习,已经可以在CycloneVGX器件中成功实现完整的TDC(或者说完整的TDL,即延时线),测试结果也比较满足,解决了超大BIN尺寸以及大量0尺寸BIN的问题,但是还是存在一些之前系列器件还未遇到的问题,这些问题将在本文中进行详细描述介绍。 在五代Cyclone器件内部系统时钟受限的情况下,意味着大量逻辑资源将被浪费在于实现较大长度的TDL上面。是否可以找到方法可以对此前TDL的长度进行优化呢?本文还将探讨这个问题。TDC前段BIN颗粒堵塞问题分析 将延时链在逻辑中实现后
    coyoo 2024-12-10 13:28 101浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦