从大脑中汲取灵感,能效提高了1000倍,新芯片拓展AI的可能性

传感器技术 2022-11-20 07:00

人工智能算法无法以目前的速度保持增长。像深度神经网络这样的算法——它受到大脑的松散启发,多层人工神经元通过称为权重的数值相互连接——每年都在变大。但如今,硬件改进已无法跟上运行这些海量算法所需的大量内存和处理能力。很快,人工智能算法的规模可能会碰壁。
即使我们可以不断扩大硬件以满足人工智能的需求,还有另一个问题:在传统计算机上运行它们会浪费大量能源。运行大型人工智能算法产生的高碳排放已经对环境有害,而且随着算法变得越来越庞大,情况只会变得更糟。
一种称为神经形态计算的解决方案从生物大脑中汲取灵感来创建节能设计。不幸的是,虽然这些芯片在节能方面可以超过数字计算机,但它们缺乏运行大型深度神经网络所需的计算能力。这让人工智能研究人员很容易忽视它们。
这在8月终于改变了,当时Weier Wan, H.-S. Philip Wong、Gert Cauwenberghs团队揭示了一种名为 NeuRRAM 的新型神经形态芯片,该芯片包括300万个存储单元和数千个内置于其硬件中的神经元,用于运行算法。

论文链接:

https://www.nature.com/articles/s41586-022-04992-8
它使用一种相对较新的内存类型,称为电阻式RAM或RRAM。与以前的RRAM芯片不同,NeuRRAM被编程为以模拟方式运行,以节省更多的能源和空间。虽然数字存储器是二进制的——存储1或0——但NeuRRAM芯片中的模拟存储单元可以在一个完全连续的范围内存储多个值。这使得芯片可以在相同数量的芯片空间中存储来自大量AI算法的更多信息。
因此,新芯片可以像数字计算机一样执行复杂的人工智能任务,如图像和语音识别,作者声称它的能效提高了 1000 倍,为微型芯片在以前不适合智能手表和手机等人工智能的小型设备中运行越来越复杂的算法开辟了可能性。
未参与这项工作的研究人员对结果印象深刻。「这篇论文非常独特.」香港大学长期RRAM研究员王中锐说,「它在不同的层面做出了贡献——在设备层面、电路架构层面和算法层面。」

创造新的回忆

在数字计算机中,运行AI算法时浪费的大量能源是由一个简单且普遍存在的设计缺陷造成的,该缺陷使每一次计算都效率低下。通常情况下,计算机的内存——它保存计算过程中处理的数据和数值——被放置在远离处理器的主板上,而处理器就是在那里进行计算的。
对于通过处理器传输的信息,「这有点像你花了八个小时在通勤上,但你只做了两个小时的工作。」曾在斯坦福大学工作的计算机科学家Wan说,他最近搬到了人工智能初创公司Aizip。

图示:NeuRRAM芯片可以在其内存中运行计算,它存储的数据不是传统的二进制数字,而是模拟频谱。(来源:网页)
用将内存和计算放在同一个地方的新型一体化芯片来解决这个问题似乎很简单。它也更接近于我们的大脑可能如何处理信息,因为许多神经科学家认为计算发生在神经元群体中,而记忆是在神经元之间的突触加强或削弱它们的连接时形成的。但事实证明,制造这样的设备很困难,因为目前的内存形式与处理器中的技术不兼容。
几十年前,计算机科学家开发了这些材料来制造新的芯片,这些芯片可以在存储内存的地方执行计算——一种被称为内存计算的技术。但由于传统的数字计算机表现非常出色,这些想法被忽视了几十年。
「这项工作,就像大多数科学工作一样,被遗忘了。」斯坦福大学教授Wong说。
事实上,第一个这样的设备至少可以追溯到1964年,当时斯坦福大学的电气工程师发现他们可以操纵某些称为金属氧化物的材料来打开和关闭其导电能力。这很重要,因为材料在两种状态之间切换的能力为传统内存存储提供了支柱。通常,在数字存储器中,高电压状态对应于1,低电压状态对应于0。

论文链接:

https://www.sciencedirect.com/science/article/abs/pii/0038110164901315
为了让RRAM设备切换状态,这里需要在连接到金属氧化物两端的金属电极上施加电压。通常,金属氧化物是绝缘体,这意味着它们不导电。但是有了足够的电压,电流就会积聚起来,最终穿过材料的薄弱环节,形成通往另一侧电极的路径。一旦电流突破,它就可以沿着该路径自由流动。
Wong将这个过程比作闪电:当云中积聚了足够多的电荷时,它会迅速找到一条低电阻路径并发生雷击。但与路径消失的闪电不同,穿过金属氧化物的路径仍然存在,这意味着它可以无限期地保持导电。并且可以通过向材料施加另一个电压来擦除导电路径。因此研究人员可以在两种状态之间切换RRAM,并使用它们来存储数字存储器。
20世纪中叶的研究人员没有认识到节能计算的潜力,他们也不需要使用他们正在使用的更小的算法。直到2000年代初,随着新金属氧化物的发现,研究人员才意识到这种可能性。
当时在IBM工作的Wong回忆说,一位在RRAM上工作的获奖同事承认他并不完全了解所涉及的物理学。「如果他不明白.」Wong回忆道,「也许我不应该尝试去理解它。」
但在2004年,三星电子的研究人员宣布他们已经成功地将RRAM内存集成在传统计算芯片之上,这表明内存计算芯片最终可能成为可能。Wong决定至少尝试一下。

用于人工智能的内存计算芯片

十多年来,像Wong这样的研究人员一直致力于将RRAM技术构建到能够可靠地处理高性能计算任务的地步。大约在2015年左右,计算机科学家开始认识到这些节能设备对于大型AI算法的巨大潜力,并开始起飞。那一年,加州大学圣巴巴拉分校的科学家表明,RRAM设备可以做的不仅仅是以一种新的方式存储内存。他们可以自己执行基本的计算任务——包括在神经网络的人工神经元中进行的绝大多数计算,这些都是简单的矩阵乘法任务。

论文链接:

https://www.nature.com/articles/nature14441
在NeuRRAM芯片中,硅神经元内置于硬件中,RRAM存储单元存储权重——代表神经元之间连接强度的值。由于NeuRRAM存储单元是模拟的,它们存储的权重代表了设备在低电阻状态和高电阻状态之间切换时出现的所有电阻状态。这实现了比数字RRAM存储器更高的能效,因为该芯片可以并行运行许多矩阵计算,而不是像数字处理版本那样一个接一个地同步运行。
但由于模拟处理仍落后于数字处理数十年,仍有许多问题需要解决。一是模拟RRAM芯片必须异常精确,因为物理芯片上的缺陷会引入可变性和噪声。(对于只有两种状态的传统芯片,这些缺陷几乎没有那么重要。)这使得模拟RRAM设备运行AI算法变得更加困难,因为如果RRAM设备的导电状态并非每次都完全相同,那么识别图像的准确性就会受到影响。
「当我们看到一条照明路径时,每次都是不同的。」Wong说,「因此,RRAM表现出一定程度的随机性——每次对它们进行编程都会略有不同。」Wong的团队证明,如果对算法进行训练以适应芯片上遇到的噪音,RRAM设备可以存储连续的AI权重,并且仍然与数字计算机一样准确,这一进步使他们能够生产NeuRRAM芯片。
他们必须解决的另一个主要问题涉及支持各种神经网络所需的灵活性。过去,芯片设计人员必须将微型RRAM器件排列在较大的硅神经元旁边的一个区域中。RRAM设备和神经元是硬连线的,没有可编程性,因此只能在一个方向上执行计算。为了支持具有双向计算的神经网络,需要额外的电线和电路,从而增加了能量和空间需求。
因此,Wong的团队设计了一种新的芯片架构,其中RRAM存储设备和硅神经元混合在一起。这种对设计的微小改动减少了总面积并节省了能源。
瑞士苏黎世联邦理工学院的神经形态研究人员Melika Payvand说:「我认为 [这种安排] 真的很漂亮……我绝对认为这是一项开创性的工作。」
几年来,Wong的团队与合作者一起在NeuRRAM芯片上设计、制造、测试、校准和运行AI算法。他们确实考虑使用其他新兴类型的内存,这些内存也可以用于内存计算芯片,但RRAM具有优势。因为它在模拟编程方面具有优势,并且相对容易与传统计算材料集成。
他们最近的结果代表了第一个可以运行如此庞大而复杂的AI算法的RRAM芯片——这一壮举以前只能在理论模拟中实现。德雷克塞尔大学计算机科学家Anup Das说:「当涉及到真正的硅时,这种能力就缺失了……这项工作是第一次演示。」
Cauwenberghs曾说过,「数字人工智能系统灵活而精确,但效率要低几个数量级。」现在,Cauwenberghs认为,他们灵活、精确和节能的模拟RRAM芯片「首次弥合了差距」。

扩大规模

该团队的设计使NeuRRAM芯片很小——只有指甲大小——同时压缩了300万个可以用作模拟处理器的RRAM存储设备。虽然它至少可以像数字计算机一样运行神经网络,但该芯片也(并且是第一次)可以运行在不同方向上执行计算的算法。他们的芯片可以向RRAM阵列的行输入电压并从列中读取输出,这是RRAM芯片的标准,但它也可以从列反向到行,因此它可以用于处理不同方向的数据流动的神经网络
与RRAM技术本身一样,这早已成为可能,但没有人想过这样做。「为什么我们以前没有考虑过这个?」 Payvand问道,「事后看来,我不知道。」
「这实际上开辟了许多其他机会。」Das说。作为例子,他提到了一个简单的系统能够运行多维物理模拟或自动驾驶汽车所需的大量算法。
然而尺寸是个问题。最大的神经网络现在包含数十亿个权重,而不是新芯片中包含的数百万个权重。Wong计划通过堆叠多个NeuRRAM芯片来扩大规模。
在未来的设备中保持较低的能源成本或进一步缩小它们同样重要。实现这一目标的一种方法是更紧密地复制大脑,以采用真实神经元之间使用的通信信号:电脉冲。这是当细胞内外的电压差达到临界阈值时,从一个神经元向另一个神经元发出的信号。
「那里有很大的挑战。」伦敦大学学院的纳米技术研究员Tony Kenyon说,「但我们可能仍想朝那个方向发展,因为……如果您使用非常稀疏的尖峰,您可能会获得更高的能源效率。」然而,Kenyon指出,要在当前的NeuRRAM芯片上运行峰值算法可能需要完全不同的架构。
目前,该团队在NeuRRAM芯片上运行大型AI算法时实现的能源效率创造了新的希望,即内存技术可能代表AI计算的未来。也许有一天,我们甚至能够匹配人类大脑的860亿个神经元和连接它们的数万亿个突触,而不会耗尽能量。 

文章来源:ScienceAI


本公众号高薪签约长期专栏作者,欢迎具备优秀写作能力的科技从业或爱好者,联系传感器小编YG18511751369(微信号)

期待下一篇10W+出自您的笔下!

 

免责声明:本文版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。 

  

 

为您发布产品,请点击“阅读原文”

 

传感器技术 制造业的未来是智能化,智能化的基础就是传感器; 互联网的方向是物联网,物联网的基石也是传感器; 关注传感器技术,获得技术资讯、产品应用、市场机会,掌握最黑科技,为中国工业导航。
评论
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 81浏览
  • 一个易用且轻量化的UI可以大大提高用户的使用效率和满意度——通过快速启动、直观操作和及时反馈,帮助用户快速上手并高效完成任务;轻量化设计则可以减少资源占用,提升启动和运行速度,增强产品竞争力。LVGL(Light and Versatile Graphics Library)是一个免费开源的图形库,专为嵌入式系统设计。它以轻量级、高效和易于使用而著称,支持多种屏幕分辨率和硬件配置,并提供了丰富的GUI组件,能够帮助开发者轻松构建出美观且功能强大的用户界面。近期,飞凌嵌入式为基于NXP i.MX9
    飞凌嵌入式 2025-01-16 13:15 216浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 203浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 146浏览
  • 百佳泰特为您整理2025年1月各大Logo的最新规格信息,本月有更新信息的logo有HDMI、Wi-Fi、Bluetooth、DisplayHDR、ClearMR、Intel EVO。HDMI®▶ 2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新规范将支持更高的分辨率和刷新率,并提供更多高质量选项。更快的96Gbps 带宽可满足数据密集型沉浸式和虚拟应用对传输的要求,如 AR/VR/MR、空间现实和光场显示,以及各种商业应用,如大型数字标牌、医疗成像和
    百佳泰测试实验室 2025-01-16 15:41 189浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 54浏览
  • 电竞鼠标应用环境与客户需求电竞行业近年来发展迅速,「鼠标延迟」已成为决定游戏体验与比赛结果的关键因素。从技术角度来看,传统鼠标的延迟大约为20毫秒,入门级电竞鼠标通常为5毫秒,而高阶电竞鼠标的延迟可降低至仅2毫秒。这些差异看似微小,但在竞技激烈的游戏中,尤其在对反应和速度要求极高的场景中,每一毫秒的优化都可能带来致胜的优势。电竞比赛的普及促使玩家更加渴望降低鼠标延迟以提升竞技表现。他们希望通过精确的测试,了解不同操作系统与设定对延迟的具体影响,并寻求最佳配置方案来获得竞技优势。这样的需求推动市场
    百佳泰测试实验室 2025-01-16 15:45 307浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 117浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 184浏览
  • 实用性高值得收藏!! (时源芯微)时源专注于EMC整改与服务,配备完整器件 TVS全称Transient Voltage Suppre,亦称TVS管、瞬态抑制二极管等,有单向和双向之分。单向TVS 一般应用于直流供电电路,双向TVS 应用于电压交变的电路。在直流电路的应用中,TVS被并联接入电路中。在电路处于正常运行状态时,TVS会保持截止状态,从而不对电路的正常工作产生任何影响。然而,一旦电路中出现异常的过电压,并且这个电压达到TVS的击穿阈值时,TVS的状态就会
    时源芯微 2025-01-16 14:23 185浏览
  • 随着智慧科技的快速发展,智能显示器的生态圈应用变得越来越丰富多元,智能显示器不仅仅是传统的显示设备,透过结合人工智能(AI)和语音助理,它还可以成为家庭、办公室和商业环境中的核心互动接口。提供多元且个性化的服务,如智能家居控制、影音串流拨放、实时信息显示等,极大提升了使用体验。此外,智能家居系统的整合能力也不容小觑,透过智能装置之间的无缝连接,形成了强大的多元应用生态圈。企业也利用智能显示器进行会议展示和多方远程合作,大大提高效率和互动性。Smart Display Ecosystem示意图,作
    百佳泰测试实验室 2025-01-16 15:37 194浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 114浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 152浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦