新一代1700VIGBT7技术及其在电力电子系统中的应用优势

原创 英飞凌工业半导体 2022-11-17 17:00

原文发表于2022中国电力电子与能量转换大会(CPEEC 2022)暨中国电源学会第二十五届学术年会(CPSSC 2022)论文集


摘 要


EconoDUAL™3是一款经典的IGBT模块封装,其上一代的1700V系列产品已经广泛应用于级联型中高压变频器、静止无功发生器(SVG)和风电变流器,覆盖了中功率和一部分大功率的应用场合。随着芯片技术的发展和市场对高功率密度IGBT模块的需求增加,英飞凌已经基于最新的1700V IGBT7技术开发了新一代的EconoDUAL™3模块,并率先推出了900A和750A两款新产品。本文首先分析了上一代最大电流等级600A的产品FF600R17ME4[1]在MVD和SVG中的典型应用,然后介绍了1700V IGBT7的芯片特性和EconoDULA™3模块的性能优化。通过与FF600R17ME4对比,分析了900A和750A的产品优势。最后,针对级联高压变频器和静止无功发生器的应用场景,通过仿真对比,阐明了新一代IGBT产品在输出能力和功率损耗等方面为系统带来的价值。


级联型H桥(Cascaded H-bridge, CHB)拓扑结构简单,扩展灵活,目前已经在中高压级联型变频器(以下简称MVD)和静止无功发生器(以下简称SVG)中获得了广泛应用,这两种设备的功率单元拓扑图如图1所示。在工业应用中,电机作为风机、泵、压缩机、皮带机、提升机、破碎机和球磨机等各种机械设备的驱动装置,其耗电量约占中国整个工业电耗的60%以上。采用MVD与生产工艺相结合,可以显著的降低电机能耗。SVG主要应用于提升电网的输电容量及稳定暂态电压,也可实现输配电网、风电和光伏、电弧炉/轧钢机、矿山、石化、煤矿、港口等行业的功率因数控制、母线电压闪变抑制及补偿不平衡负荷、滤除负荷谐波电流,达到提高电能质量,节约用电的目的。


英飞凌的上一代1700V EconoDUAL™3 IGBT4包含225A、300A、450A和600A 4个电流等级,如图2所示,通过每相采用单个模块和两个模块并联,基本可以覆盖6kV-10kV MVD的中等功率范围和一部分大功率范围、10kV-35kV SVG的中等容量范围。对于大功率MVD和大容量SVG,现有的1700V IGBT有两种解决方案,一种是增加EconoDUAL™3模块的并联数量,比如采用600A模块FF600R17ME4 3并联或者4并联。另一种是采用其他封装的大电流IGBT模块,比如1000A模块FF1000R17IE4或者1400A模块FF1400R17IP4,这样既可以增加系统的容量,又可以减少模块的并联数量,略有不足之处是增加了模块的封装种类,功率单元需要根据模块的结构重新调整,不利于产品的平台化设计。


为了进一步提升EconoDUAL™3模块的性能,英飞凌开发了新一代的1700V IGBT7芯片和EC7二极管芯片,已经推出了750A FF750R17ME7D[2]和900A FF900R17ME7[3]两款新产品,其电流密度分别比FF600R17ME4提升了25%和50%。其中900A是业内1700V EconoDUAL™3已量产产品的最大电流等级。FF750R17ME7D对二极管性能进行了增强,电流升级到了1200A,在负功率因数应用中,比如双馈风力发电机电机侧变流器[4],它可以降低二极管的结温波动,增加器件的功率循环寿命。


a.MVD

b.SVG

图1.MVD和SVG的功率单元拓扑图

图2.EconoDUAL™3 IGBT模块


1

FF600R17ME4在MVD和SVG中的应用分析


在MVD和SVG应用中,IGBT的开关频率比较低,所以IGBT的开关损耗在器件总损耗中的占比也比较低。下面以表1中MVD和SVG风冷功率单元的典型额定工作参数为例,用Plecs仿真软件分析了FF600R17ME4的功率损耗和结温,结果如图3所示。MVD的功率因数接近1,IGBT的导通损耗和开关损耗之和远高于二极管,所以IGBT的结温最高,为122.3℃。此外,IGBT的导通损耗约占其总损耗(导通损耗+开关损耗)的73%。SVG的功率因数为0,二极管的导通损耗和IGBT的导通损耗接近,占各自总损耗的60%和72%。二极管的开关损耗比IGBT的低,所以二极管的总损耗比IGBT略低。由于二极管的结壳热阻比IGBT高,所以二极管的结温最高,为119.9℃。在MVD和SVG中,IGBT的导通损耗约占IGBT和二极管总损耗的56.5%和32.6%,所以采用具有更低饱和压降的IGBT7可以降低器件的总损耗,提升器件的输出能力。下文将进一步研究1700V IGBT7在MVD和SVG中的应用价值。对于MVD,主要对比FF600R17ME4和FF900R17ME7。对于SVG,分析FF600R17ME4,FF750R17ME7D和FF900R17ME7这三款产品。

可左右滑动进行查看

图3.FF600R17ME4的功率损耗和结温-工作参数参考表1


表1.MVD和SVG功率单元的额定工况


2

1700V IGBT7 芯片技术


2.1

IGBT7芯片介绍


IGBT7芯片技术首先应用于1200V的小功率IGBT,后来逐步扩展到1200V的中功率和大功率IGBT,其主要应用为电机控制类的变频器,比如通用变频器、伺服驱动器和电动汽车主驱逆变器。为了提升1700V IGBT模块的电流密度,英飞凌专门开发了1700V的IGBT7芯片[4],并首先应用于EconoDUAL™3封装。IGBT7芯片技术采用了微沟槽(micro-pattern trench,简称MPT)结构,以解决芯片电流密度增加面临的挑战,MPT结构的简化示意图如图4所示。将台面(mesa)的宽度降至亚微米级别,可以增加载流子限制,从而实现更低的饱和压降。此外,通过调整栅极沟槽、发射极沟槽和有源沟槽的接触方案,可以同时优化芯片的开关特性、开关损耗和门极电荷。1700V的二极管芯片EC7(emitter controlled,发射极控制)融合了1200V EC4和1700V EC5二极管的设计理念,旨在实现更高的电流密度和更优的性能折衷,并维持在不同应用条件下运行所需的鲁棒性。


图4.MPT单元,中心是有源沟道,左上是具有无源台面(mesa)的栅极沟槽,左下是发射极沟槽


图5是FF600R17ME4,FF750R17ME7D和FF900R17ME7在25℃和150℃结温的输出特性曲线。由于IGBT7采用了微沟槽结构和载流子限制,它的饱和压降显著降低。以FF600R17ME4的标称电流600A为基准,对比这三种器件在150℃的饱和压降,FF600R17ME4为2.45V。FF750R17ME7D为1.81V,比FF600R17ME4低0.64V,大约26.1%。FF900R17ME7为1.65V,比FF600R17ME4低0.8V,大约32.6%。更公平合理的比较是基于器件各自的标称电流,此时FF750R17ME7D和FF900R17ME7D的饱和压降均为2.05V,比FF600R17ME4低0.4V,大约16.3%。因此,IGBT7可以明显的降低IGBT的导通损耗。


图5.IGBT4和IGBT7的导通特性曲线,图表上方的数值为三种器件的Vce值,条件为:Ic=600A,Vge=+15V,Tvj=150℃


图6是三种器件二极管的正向特性曲线,结温分别为25℃和150℃。当电流为600A时,FF600R17ME4的正向压降为1.95V。FF750R17ME7D为1.63V,比FF600R17ME4低0.32V,大约16.4%。FF900R17ME7为1.88V,比FF600R17ME4低0.07V,大约3.6%。因为FF750R17ME7D的二极管电流为1200A,所以它比FF900R17ME7的压降更低。当基于器件各自的标称电流时,FF750R17ME7D的正向压降为1.8V,比FF600R17ME4低0.15V,大约7.7%。FF900R17ME7为2.2V,比FF600R17ME4高0.25V,大约12.8%。当电流大约超过300A时,FF600R17ME4二极管的压降是正温度系数,而FF750R17ME7D和FF900R17ME7二极管的压降在全电流范围均为负温度系数。这样设计的原因是为了优化EC7二极管的反向恢复特性,降低反向恢复损耗,同时也可以降低IGBT的开通损耗。在2-3kHz开关频率的整流或者逆变应用中,由于IGBT的开关损耗和二极管的反向恢复损耗占比较高[4],EC7二极管有助于降低器件的总损耗。与FF600R17ME4相比,即便FF750R17ME7D无法明显降低二极管的导通损耗,甚至FF900R17ME7二极管的导通损耗还略微增加,但是FF750R17ME7D和FF900R17ME7的总损耗比FF600R17ME4明显降低,详见SVG应用仿真部分的分析。


图6.EC4和EC7二极管的正向特性曲线,图表上方的数值为三种器件的Vf值,条件为:Ic=600A,Tvj=150℃


3

IGBT7 EconoDUAL™3模块的新特性


高电流密度的IGBT模块除了需要高电流密度的芯片,还需要增强模块设计,比如提升芯片的工作结温、减小模块内部引线电阻发热和降低功率端子温升,以应对系统高功率密度设计面临的挑战。


3.1

175℃过载工作结温


通过优化EconoDUAL™3模块设计,IGBT7增加了过载结温定义,如图7所示。IGBT7允许的过载结温位于150℃和175℃之间,过载时间小于等于20%过载周期,比如当过载周期T=300秒时,过载持续时间t1不能超过60秒。此外,60秒也是过载持续时间的最大值,比如如果过载周期T=600秒,则t1仍然不能超过60秒。在通用变频器、中高压MVD和SVG等有一分钟及以内过载工况的应用中,与IGBT4相比,IGBT7额外的25℃过载工作结温可以提升器件额定工况对应的工作结温,使过载结温位于150℃到175℃之间,从而增加器件的输出能力和系统的功率密度。


图7.IGBT7和IGBT4允许的工作结温,IGBT7过载结温最高175℃,IGBT4最高结温150℃


3.2

提升交直流功率端子载流能力


模块的输出电流会在交直流功率端子上产生与电流呈平方关系的欧姆损耗,这些损耗一部分通过模块内部的铜连接线传导到DCB,然后通过模块基板传递到散热器。另一部分损耗传递到与功率端子连接的外部铜排,最终功率端子会达到热平衡。如果EconoDUAL™3模块输出更大的电流,功率端子的温升可能会成为系统设计的瓶颈。为此,EconoDUAL™3 IGBT7对模块内部连接DCB和功率端子的结构设计进行了优化。如图8所示,IGBT7增加了模块内部功率端子侧的铜片面积,以便于安装更多的铜连接线,因而IGBT7比IGBT4的铜连接线数量增加了40%。热测试对比表明,在相同工况(模块输出电流550Arms,IGBT开关频率1000Hz)下,1200V EconoDUAL™3 IGBT7的直流端子温度比IGBT4低大约20℃[5]。因为1700V EconoDUAL™3 IGBT7的封装与1200V EconoDUAL™3 IGBT7相同,所以1200V的测试结果也适用于1700V IGBT7。

a.直流功率端子

b.交流功率端子

图8.EconoDUAL™3交直流功率端子与内部DCB的连接图,FF600R17ME4(左),FF900R17ME7(右)


3.3

减小内部引线电阻


模块内部的绑定线、DCB上表面的覆铜层和芯片与DCB之间的焊接层共同组成了模块内部的引线电阻,其等效值为RCC’+EE’,如图9所示。C是IGBT集电极功率端子,C´是IGBT发射极辅助端子,E是IGBT发射极功率端子,E´是IGBT发射极辅助端子。EconoDUAL™3为半桥拓扑,包含两个等效的IGBT和与其并联的续流二极管。每个IGBT和续流二极管各包含一个RCC’+EE’。如表2所示,由于IGBT7优化了模块内部设计,常温下RCC’+EE’为0.8毫欧,比IGBT4的1.1毫欧降低了27.3%,因而可以较大的降低引线电阻的损耗,引线电阻的损耗计算方法可参考文献6[6]


图9.EconoDUAL™3 IGBT功率端子和等效的内部引线电阻示意图


表2.EconoDUAL™3 IGBT4和IGBT7的内部引线电阻


4

IGBT7和IGBT4仿真分析


4.1

MVD应用仿真分析


如上文分析,在MVD应用中,FF600R17ME4的IGBT导通损耗约占总损耗的56.5%(不包括引线电阻损耗)。因为FF750R17ME7D和FF900R17ME7的IGBT饱和压降均比FF600R17ME4明显降低,所以在相同结温下,FF900R17ME7的输出能力最高,FF600R17ME4最低,FF750R17ME7D介于二者之间。为了简化分析,本部分的仿真主要对比FF900R17ME7和FF600R17ME4。仿真参数见表1,考虑风冷和水冷两种冷却工况,散热器的热阻(针对半个EconoDUAL™3模块)分别为0.15K/W和0.05K/W。对于MVD的过载工况,虽然110%额定电流1分钟过载在风机、水泵类负载中比较普遍,从更严苛的角度考虑,本文的过载工况定为120%额定电流1分钟。


图10为风冷MVD的输出电流和IGBT最高结温的仿真结果,包括额定工况和过载工况。结温为150℃时,两种器件的额定输出电流分别为350A和442A。FF900R17ME7比FF600R17ME4高92A,大约26.3%。过载时,考虑FF900R17ME7具有1分钟的过载结温,当额定输出仍为442A时,过载结温大约为175℃,刚好充分利用了25℃过载结温。为了使FF600R17ME4的过载结温不超过150℃,其额定输出电流需要降低到320A。所以,过载工况时FF900R17ME7的输出比FF600R17ME4高122A,大约38.1%。


与风冷工况类似,图11总结了水冷MVD的仿真结果。结温为150℃时,FF600R17ME4的额定输出电流为570A,FF900R17ME7为721A,比FF600R17ME4高151A,大约26.5%。过载工况时,两种器件的输出电流分别为480A和672A,FF900R17ME7比FF600R17ME4高192A,大约40%。仿真结果表明IGBT7额外的25℃过载结温可以进一步提升FF900R17ME7相对于FF600R17ME4的输出能力。


除了提升器件的输出能力,IGBT7还可以降低器件的总损耗,增加系统的效率。如图12所示,FF900R17ME7一个IGBT和反并联续流二极管的总损耗为297W,比FF600R17ME4的402W低105W,大约26.1%。除了二极管的导通损耗有所增加,其他部分的损耗均有不同程度的降低,体现了IGBT7芯片和EconoDUAL™3封装优化的价值。其中,IGBT的导通损耗降低了51W,IGBT开关损耗降低了26W,二极管开关损耗降低了11W,引线电阻损耗降低了20W。


图10.风冷MVD的输出电流和IGBT最高结温-额定和120%过载1分钟


图11.水冷MVD的输出电流和IGBT最高结温-额定和120%过载1分钟


图12.风冷MVD中FF600R17ME4和FF900R17ME7的损耗(一个IGBT和一个续流二极管),输出电流300A


4.2

SVG应用仿真分析


根据表1中的SVG工作参数,采用与MVD相同的仿真方法、散热器热阻和过载工况,对三种器件进行了对比分析。


图13为风冷SVG的仿真结果。结温为150℃时,FF600R17ME4,FF750R17ME7D和FF900R17ME7的额定输出电流分别为367A,427A和417A。FF750R17ME7D比FF600R17ME4高60A,大约16.3%。FF900R17ME7高50A,大约13.6%。120%过载1分钟时,FF600R17ME4的输出电流为325A。考虑IGBT7的过载结温不能超过175℃,FF750R17ME7D输出电流大约仍为427A,FF900R17ME7大约仍为417A。其分别比FF600R17ME4高102A和92A,大约31.4%和28.3%。


图14为水冷SVG的仿真结果。结温为150℃时,FF600R17ME4,FF750R17ME7D和FF900R17ME7的额定输出电流分别为612A,715A和673A。FF750R17ME7D比FF600R17ME4高103A,大约16.8%。FF900R17ME7高61A,大约10%。FF600R17ME4 120%过载1分钟的输出电流为512A。FF750R17ME7D的输出电流为675A,FF900R17ME7的输出电流为645A。其分别比FF600R17ME4高163A和133A,大约31.8%和26%。分析结果表明,与FF600R17ME4相比,IGBT7 25℃的过载结温为FF750R17ME7D和FF900R17ME7增加了大约15%的输出能力。


如图15所示,FF600R17ME4一个IGBT和续流二极管的总损耗为781W,FF750R17ME7D为608W,FF900R17ME7为607W,它们比FF600R17ME7低大约173W,大约为22.1%。FF750R17ME7D所有的损耗部分均比FF600R17ME4低。FF900R17ME7除了二极管的导通损耗比FF600R17ME4高5W,其它部分的损耗也均低于FF600R17ME4。这部分的分析结果再次验证了上文介绍的IGBT7芯片和EconoDUAL™3封装优化为SVG应用带来的价值。


图13.风冷SVG的输出电流和二极管最高结温-额定和120%过载1分钟


图14.水冷SVG的输出电流和二极管最高结温-额定和120%过载1分钟


图15.水冷SVG中FF600R17ME4,FF750R17ME7D和FF900R17ME7的损耗(一个IGBT和一个续流二极管),输出电流500A


5

结论


本文介绍了英飞凌新一代1700V IGBT7和二极管EC7芯片的特性,并与上一代产品FF600R17ME4进行了详细的静态特性对比。此外,1700V EconoDUAL™3 IGBT7模块优化了内部设计,有助于MVD和SVG系统实现更高的功率密度。基于MVD典型应用工况的仿真结果表明, FF900R17ME7比FF600R17ME4的损耗更低,输出能力更强,可以实现更高的电流密度。在SVG应用中,FF750R17ME7D的损耗和FF900R17ME7相似,输出能力略高于FF900R17ME7,这两款新产品的损耗均比FF600R17ME4低很多,因而可以实现更高的输出能力。本文的仿真结果均基于理想工况,IGBT模块在实际系统中的损耗和输出能力应以实际评估为准。


参考文献

[1] FF600R17ME4, datasheet

[2] FF750R17ME7D_B11, datasheet.

[3] FF900R17M7_B11, datasheet.

[4] Aleksei Gurvich, Philipp Ross, Jan Baurichter, Andreas Schmal, Klaus Vogel. A New Level of Performance: Best-in-Class 900 A and 750 A 1700 V EconoDUAL™ 3 Modules with TRENCHSTOP™ IGBT7, PCIM Europe, Nuremberg, Germany, 2022.

[5] Klaus Vogel, Jan Baurichter, Oliver Lenze, Ulrich Nolten, Alexander Philippou, Philipp Ross, Andreas Schmal, Christoph Urban. New, best-in-class 900-A 1200-V EconoDUAL™ 3 with IGBT 7: highest power density and performance, PCIM Europe, Nuremberg, Germany, 2019.

 [6] Heng Wang, Xin Ma, Yong Yang. A benchmark study of the AC voltage in 3L converter for high power offshore wind turbines. PCIM Asia, Shanghai, China, 2022.



扫描上方二维码

欢迎关注微信公众号

【英飞凌工业半导体】

英飞凌工业半导体 英飞凌工业半导体同名公众号是英飞凌功率半导体产品技术和应用技术的交流平台和值得收藏的资料库。提供新产品介绍,应用知识和经验分享,IGBT在线课程,线上线下研讨会发布和回放。 欢迎来稿:IPCWechat@infineon.com。
评论
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 418浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 616浏览
  • 随着消费者对汽车驾乘体验的要求不断攀升,汽车照明系统作为确保道路安全、提升驾驶体验以及实现车辆与环境交互的重要组成,日益受到业界的高度重视。近日,2024 DVN(上海)国际汽车照明研讨会圆满落幕。作为照明与传感创新的全球领导者,艾迈斯欧司朗受邀参与主题演讲,并现场展示了其多项前沿技术。本届研讨会汇聚来自全球各地400余名汽车、照明、光源及Tier 2供应商的专业人士及专家共聚一堂。在研讨会第一环节中,艾迈斯欧司朗系统解决方案工程副总裁 Joachim Reill以深厚的专业素养,主持该环节多位
    艾迈斯欧司朗 2025-01-16 20:51 282浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 58浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 186浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 233浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 113浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 189浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 150浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 117浏览
  • 80,000人到访的国际大展上,艾迈斯欧司朗有哪些亮点?感未来,光无限。近日,在慕尼黑electronica 2024现场,ams OSRAM通过多款创新DEMO展示,以及数场前瞻洞察分享,全面展示自身融合传感器、发射器及集成电路技术,精准捕捉并呈现环境信息的卓越能力。同时,ams OSRAM通过展会期间与客户、用户等行业人士,以及媒体朋友的深度交流,向业界传达其以光电技术为笔、以创新为墨,书写智能未来的深度思考。electronica 2024electronica 2024构建了一个高度国际
    艾迈斯欧司朗 2025-01-16 20:45 775浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 140浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 294浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 143浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 209浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦