在JetsonNano上使用TensorRTC++实现YOLOv5模型推理

原创 OpenCV学堂 2022-11-16 23:07

点击上方蓝字关注我们

微信公众号:OpenCV学堂

关注获取更多计算机视觉与深度学习知识

软件版本信息

软件版本信息

JetPack4.6CUDA10.2TensorRT8.0.1OpenCV4.5.4


导出YOLOv5 engine文件

前面有一篇文章详细说明了如何在Jetson Nano上安装YOLOv5,然后运行,这里只需在导出的时候导出engine模型文件支持,命令行如下:
python export.py --weights yolov5.pt --include onnx engine
这里需要注意的TensorRT版本一致问题。如果engine文件不是在Jetson Nano上生成的,而在其他PC机器上生成,则TensorRT版本必须与Jetson Nano上使用的版本保持一致。

TensorRT推理

首先创建编译CMakeLists.txt文件,然后把下面的内容copy进去:
cmake_minimum_required( VERSION 2.8 )# 声明一个 cmake 工程project(yolov5_tensorrt_demo)# 设置编译模式#set( CMAKE_BUILD_TYPE "Release" )#添加OPENCV库#指定OpenCV版本,代码如下#find_package(OpenCV 4.5.4 REQUIRED)#如果不需要指定OpenCV版本,代码如下find_package(OpenCV REQUIRED)find_package(CUDA REQUIRED)
include_directories( ./src/)#添加OpenCV头文件include_directories(${OpenCV_INCLUDE_DIRS})# 添加CUDA10.2头文件include_directories(/usr/local/cuda-10.2/include)link_directories(/usr/local/cuda-10.2/lib64)# tensorRTinclude_directories(/usr/local/cuda/include)link_directories(/usr/lib/arrch64-linux-gnu)#显示OpenCV_INCLUDE_DIRS的值message(${OpenCV_INCLUDE_DIRS})
FILE(GLOB_RECURSE TEST_SRC src/*.cpp )# 添加一个可执行程序# 语法:add_executable( 程序名 源代码文件 )add_executable(target main.cpp ${TEST_SRC})# 将库文件链接到可执行程序上target_link_libraries(target nvinfer)target_link_libraries(target cudart)target_link_libraries(target ${OpenCV_LIBS})

构建的目录结构如下


然后在Jetson Nano上打开终端命令行输入:

mkdir buildcd buildcmake ..

运行结果如下:


然后运行make


成功运行之后,执行编译生成的target文件:

./target

运行推理与显示界面如下:

错误与修正

01

错误一:

error: 'cudaMalloc' was not declared in this scope

这个是因为没有添加下面的头文件:

#include #include 

添加之后就可以解决。

02

错误二:

Engine文件版本一致导致,原因是我之前导出的是在tensorRT8.4版本,jetsonNano是8.0的,重新在Jetson Nano上导出一下就可以解决。

最后贴一下,演示的程序main C++代码:
#include 
#include 
#include 
#include 

#include "tensorrt_yolov5_demo.h"

using namespace cv;

std::string label_map = "classes.txt";
int main(int argc, char** argv) {
    std::vector<std::string> classNames;
    std::ifstream fp(label_map);
    std::string name;
    while (!fp.eof()) {
        getline(fp, name);
        if (name.length()) {
            classNames.push_back(name);
        }
    }
    fp.close();

    auto detector = std::make_shared();
    detector->initConfig("yolov5s.engine"0.250.25);
    std::vector results;
    cv::VideoCapture capture("example_dsh.mp4");
    cv::Mat frame;
    while (true) {
        bool ret = capture.read(frame);
        if (!ret) {
            break;
        }
        detector->detect(frame, results);
        for (DetectResult dr : results) {
            cv::Rect box = dr.box;
            cv::putText(frame, classNames[dr.classId], cv::Point(box.tl().x, box.tl().y - 10), cv::FONT_HERSHEY_SIMPLEX, .5, cv::Scalar(000));
        }
        cv::imshow("YOLOv5-6.1 + TensorRT8.4 + Jetson Nano - by gloomyfish", frame);
        char c = cv::waitKey(1);
        if (c == 27) { // ESC 退出
            break;
        }
        // reset for next frame
        results.clear();
    }
    cv::waitKey(0);
    cv::destroyAllWindows();
    return 0;
}



扫码获取YOLOv5 TensorRT INT8量化脚本与视频教程

扫码查看OpenCV+OpenVIO+Pytorch系统化学习路线图

 推荐阅读 

CV全栈开发者说 - 从传统算法到深度学习怎么修炼

2022入坑深度学习,我选择Pytorch框架!

Pytorch轻松实现经典视觉任务

教程推荐 | Pytorch框架CV开发-从入门到实战

OpenCV4 C++学习 必备基础语法知识三

OpenCV4 C++学习 必备基础语法知识二

OpenCV4.5.4 人脸检测+五点landmark新功能测试

OpenCV4.5.4人脸识别详解与代码演示

OpenCV二值图象分析之Blob分析找圆

OpenCV4.5.x DNN + YOLOv5 C++推理

OpenCV4.5.4 直接支持YOLOv5 6.1版本模型推理

OpenVINO2021.4+YOLOX目标检测模型部署测试

比YOLOv5还厉害的YOLOX来了,官方支持OpenVINO推理

OpenCV学堂 专注计算机视觉开发技术分享,技术框架使用,包括OpenCV,Tensorflow,Pytorch教程与案例,相关算法详解,最新CV方向论文,硬核代码干货与代码案例详解!作者在CV工程化方面深度耕耘15年,感谢您的关注!
评论
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 108浏览
  • 光伏逆变器是一种高效的能量转换设备,它能够将光伏太阳能板(PV)产生的不稳定的直流电压转换成与市电频率同步的交流电。这种转换后的电能不仅可以回馈至商用输电网络,还能供独立电网系统使用。光伏逆变器在商业光伏储能电站和家庭独立储能系统等应用领域中得到了广泛的应用。光耦合器,以其高速信号传输、出色的共模抑制比以及单向信号传输和光电隔离的特性,在光伏逆变器中扮演着至关重要的角色。它确保了系统的安全隔离、干扰的有效隔离以及通信信号的精准传输。光耦合器的使用不仅提高了系统的稳定性和安全性,而且由于其低功耗的
    晶台光耦 2025-01-09 09:58 43浏览
  • 在当前人工智能(AI)与物联网(IoT)的快速发展趋势下,各行各业的数字转型与自动化进程正以惊人的速度持续进行。如今企业在设计与营运技术系统时所面临的挑战不仅是技术本身,更包含硬件设施、第三方软件及配件等复杂的外部因素。然而这些系统往往讲究更精密的设计与高稳定性,哪怕是任何一个小小的问题,都可能对整体业务运作造成严重影响。 POS应用环境与客户需求以本次分享的客户个案为例,该客户是一家全球领先的信息技术服务与数字解决方案提供商,遭遇到一个由他们所开发的POS机(Point of Sal
    百佳泰测试实验室 2025-01-09 17:35 62浏览
  • 1月7日-10日,2025年国际消费电子产品展览会(CES 2025)盛大举行,广和通发布Fibocom AI Stack,赋智千行百业端侧应用。Fibocom AI Stack提供集高性能模组、AI工具链、高性能推理引擎、海量模型、支持与服务一体化的端侧AI解决方案,帮助智能设备快速实现AI能力商用。为适应不同端侧场景的应用,AI Stack具备海量端侧AI模型及行业端侧模型,基于不同等级算力的芯片平台或模组,Fibocom AI Stack可将TensorFlow、PyTorch、ONNX、
    物吾悟小通 2025-01-08 18:17 56浏览
  • 在过去十年中,自动驾驶和高级驾驶辅助系统(AD/ADAS)软件与硬件的快速发展对多传感器数据采集的设计需求提出了更高的要求。然而,目前仍缺乏能够高质量集成多传感器数据采集的解决方案。康谋ADTF正是应运而生,它提供了一个广受认可和广泛引用的软件框架,包含模块化的标准化应用程序和工具,旨在为ADAS功能的开发提供一站式体验。一、ADTF的关键之处!无论是奥迪、大众、宝马还是梅赛德斯-奔驰:他们都依赖我们不断发展的ADTF来开发智能驾驶辅助解决方案,直至实现自动驾驶的目标。从新功能的最初构思到批量生
    康谋 2025-01-09 10:04 59浏览
  • 职场是人生的重要战场,既是谋生之地,也是实现个人价值的平台。然而,有些思维方式却会悄无声息地拖住你的后腿,让你原地踏步甚至退步。今天,我们就来聊聊职场中最忌讳的五种思维方式,看看自己有没有中招。1. 固步自封的思维在职场中,最可怕的事情莫过于自满于现状,拒绝学习和改变。世界在不断变化,行业的趋势、技术的革新都在要求我们与时俱进。如果你总觉得自己的方法最优,或者害怕尝试新事物,那就很容易被淘汰。与其等待机会找上门,不如主动出击,保持学习和探索的心态。加入优思学院,可以帮助你快速提升自己,与行业前沿
    优思学院 2025-01-09 15:48 59浏览
  • 在智能网联汽车中,各种通信技术如2G/3G/4G/5G、GNSS(全球导航卫星系统)、V2X(车联网通信)等在行业内被广泛使用。这些技术让汽车能够实现紧急呼叫、在线娱乐、导航等多种功能。EMC测试就是为了确保在复杂电磁环境下,汽车的通信系统仍然可以正常工作,保护驾乘者的安全。参考《QCT-基于LTE-V2X直连通信的车载信息交互系统技术要求及试验方法-1》标准10.5电磁兼容试验方法,下面将会从整车功能层面为大家解读V2X整车电磁兼容试验的过程。测试过程揭秘1. 设备准备为了进行电磁兼容试验,技
    北汇信息 2025-01-09 11:24 69浏览
  • 一个真正的质量工程师(QE)必须将一件产品设计的“意图”与系统的可制造性、可服务性以及资源在现实中实现设计和产品的能力结合起来。所以,可以说,这确实是一种工程学科。我们常开玩笑说,质量工程师是工程领域里的「侦探」、「警察」或「律师」,守护神是"墨菲”,信奉的哲学就是「墨菲定律」。(注:墨菲定律是一种启发性原则,常被表述为:任何可能出错的事情最终都会出错。)做质量工程师的,有时会不受欢迎,也会被忽视,甚至可能遭遇主动或被动的阻碍,而一旦出了问题,责任往往就落在质量工程师的头上。虽然质量工程师并不负
    优思学院 2025-01-09 11:48 82浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 93浏览
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 84浏览
  • HDMI 2.2 规格将至,开启视听新境界2025年1月6日,HDMI Forum, Inc. 宣布即将发布HDMI规范2.2版本。新HDMI规范为规模庞大的 HDMI 生态系统带来更多选择,为创建、分发和体验理想的终端用户效果提供更先进的解决方案。新技术为电视、电影和游戏工作室等内容制作商在当前和未来提供更高质量的选择,同时实现多种分发平台。96Gbps的更高带宽和新一代 HDMI 固定比率速率传输(Fixed Rate Link)技术为各种设备应用提供更优质的音频和视频。终端用户显示器能以最
    百佳泰测试实验室 2025-01-09 17:33 66浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球中空长航时无人机产值达到9009百万美元,2024-2030年期间年复合增长率CAGR为8.0%。 环洋市场咨询机构出版了的【全球中空长航时无人机行业总体规模、主要厂商及IPO上市调研报告,2025-2031】研究全球中空长航时无人机总体规模,包括产量、产值、消费量、主要生产地区、主要生产商及市场份额,同时分析中空长航时无人机市场主要驱动因素、阻碍因素、市场机遇、挑战、新产品发布等。报告从中空长航时
    GIRtina 2025-01-09 10:35 60浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦