电源完整性与地弹噪声的高速PCB仿真

电子芯期天 2022-11-16 08:00

   随着信号的沿变化速度越来越快,今天的高速数字电路板设计者所遇到的问题在几年前看来是不可想象的。对于小于1纳秒的信号沿变化,PCB板上电源层与地层间的电压在电路板的各处都不尽相同,从而影响到IC芯片的供电,导致芯片的逻辑错误。为了保证高速器件的正确动作,设计者应该消除这种电压的波动,保持低阻抗的电源分配路径。 
        为此,你需要在电路板上增加退耦电容来将高速信号在电源层和地层上产生的噪声降至最低。你必须知道要用多少个电容,每一个电容的容值应该是多大,并且它们放在电路板上什么位置最为合适。一方面你可能需要很多电容,而另一方面电路板上的空间是有限而宝贵的,这些细节上的考虑可能决定设计的成败。 
        反复试验的设计方法既耗时又昂贵,结果往往导致过约束的设计从而增加不必要的制造成本。使用软件工具来仿真、优化电路板设计和电路板资源的使用情况,对于要反复测试各种电路板配置方案的设计来说是一种更为实际的方法。本文以一个xDSM(密集副载波多路复用)电路板的设计为例说明此过程,该设计用于光纤 /宽带无线网络。软件仿真工具使用Ansoft的SIwave,SIwave基于混合全波有限元技术,可以直接从layout工具Cadence Allegro, Mentor Graphics BoardStation, Synopsys Encore和 Zuken CR-5000 Board Designer导入电路板设计。图1是SIwave中该设计的PCB版图。由于PCB的结构是平面的,SIwave可以有效的进行全面的分析,其分析输出包括电路板的谐振、阻抗、选定网络的S参数和电路的等效Spice模型。 

 

  图1, SIwave中xDSM电路板的PCB版图,左边是两个高速总线,右边是三个Xilinx的FPGA。 
        xDSM电路板的尺寸,也就是电源层和地层的尺寸是11×7.2 英寸(28×18.3 厘米)。电源层和地层都是1.4mil厚的铜箔,中间被23.98mil厚的衬底隔开。   
        为了理解对电路板的设计,首先考虑xDSM电路板的裸板(未安装器件)特性。根据电路板上高速信号的上升时间,你需要了解电路板在频域直到2GHz范围内的特性。图2所示为一个正弦信号激励电路板谐振于0.54GHz时的电压分布情况。同样,电路板也会谐振于0.81GHz和0.97GHz以及更高的频率。为了更好地理解,你也可以在这些频率的谐振模式下仿真电源层与地层间电压的分布情况。 
        图2所示在0.54GHz的谐振模式下,电路板的中心处电源层和地层的电压差变化为零。对于一些更高频率的谐振模式,情况也是如此。但并非在所有的谐振模式下都是如此,例如在1.07GHz、 1.64GHz和1.96 GHz的高阶谐振模式下,电路板中心处的电压差变化是不为零的。


                                        图2, 正弦信号激励电路板谐振于0.54GHz时的电压分布情况。  


        找到零压差变化点有助于我们将需要在短时间内产生大量电流变化的器件放置于此。例如,如果要将一块Xinlix的FPGA芯片放在电路板上,该芯片会在 0.2纳秒内产生2A的输入电流变化。如此短时间内的大电流变化将带来电路板的电源完整性问题,会使电路板产生各种模式的谐振,导致电源层和地层电压的不均匀。然而,电路板中心处在某些谐振模式下具有零压差变化的特性,因此将FPGA芯片放置于此可以避免电路板产生这些低频的谐振模式。FPGA芯片不能激发这些低频谐振模式,是由于从电路板的中心处将无法耦合至这些谐振模式。
        图3中的紫色曲线显示的是当位于电路板中心处的芯片从电源平面吸入电流时引起的谐振。事实上,峰值出现在高阶的谐振频率1.07GHz、1.64GHz和1.96GHz上,而不是低阶的谐振频率0.54GHz、0.81GHz和0.97GHz上,这正如我们所料。 
 
图3, 紫色曲线显示的是当位于电路板中心处的芯片从电源平面吸入电流时引起的谐振;绿色曲线表示当将芯片放置偏移中心位置时的响应。
        尽管器件的布局与放置的位置有助于减小电源完整性的问题,但它们并不能解决所有的问题。首先,你不能将所有的关键器件放在电路板的中心。通常情况下,器件放置的灵活性是有限的。其次,在任何给定的位置总有一些谐振模式会被激发。例如,图3中绿色曲线表示当你将芯片放置在沿某一坐标轴偏移中心位置时, 0.54GHz的谐振模式将被激发。成功的设计电路板的PDS(电源分配系统)的关键在于在合适的位置增加退耦电容,以保证电源的完整性和在足够宽的频率范围内保证地弹噪声足够小。   
退耦电容
        设想FPGA在0.2纳秒的上升沿吸入2A的电流,此时电源电压会暂时降低(压降),而地平面电压会暂时被拉高(地弹)。其变化幅度取决于电路板的阻抗和芯片偏置管脚处的用于提供电流的退耦电容(图4a)。
   由于电流的瞬变值为2A,电压的瞬变值由V=Z×I决定,Z是从芯片端看出的阻抗,因此,为了避免电压的尖峰波动,在从直流到信号带宽的频率范围内,Z值必须低于某一门限值。(图4b) 
 
图4,其变化幅度取决于电路板的阻抗和芯片偏置管脚处的用于提供电流的退耦电容;为了避免电压的尖峰波动,在从直流到信号带宽的频率范围内,Z值必须低于某一门限值。图中虚线部分即为PDS阻抗应该满足的目标区域。   
        在该设计中,为了保持电源完整性,电源—地的电压波动必须保持在标准值3.3V的5%以内。因此噪声不能大于0.05×3.3V=165 mV。可以据此按照欧姆定律计算出PDS的最大阻抗165mV/2A=82.5mΩ,图4中虚线部分即为PDS阻抗应该满足的目标区域。   
        对于最低频率,通常是1kHz或者更低的频率——电源满足阻抗特性的要求,电源和地层的结构通常不会破坏阻抗特性,因为它们呈现低电阻与电感特性。而当频率高于1kHz时,电流通路的互感大到足以使电压超过限定值,根据: 
 
        对于更高的频率,退耦电容作为电源层与地层之间的低阻抗连接是必要的。需要满足PDS阻抗要求的信号带宽可由下式估计:
 
        在该设计中,其带宽为1.75GHz。为了达到这么宽的带宽,通常需要在MHz信号区域放置很多高频瓷片电容,在kHz信号区域放置体积较大的电解电容。这些电容矩阵与其它器件共同占用宝贵的电路板空间。在反复试验的设计方法中,物理原型是不可缺少的,而虚拟原型技术使设计者可以在不需要物理原型的基础上解决这个问题。  
        为PCB板设计PDS,例如此例中的xDSM板,使用SIwave可以在IC芯片处放置一个端口,计算电路板在适当带宽内的输入阻抗。图5中红色曲线显示的是电路板上无电容时的阻抗。阻抗轴与频率轴都取对数坐标。仿真显示了电路板本身电容的影响而忽略了经过电源的低感应电流回路。从图中可以看出,阻抗随着频率的减少而增加,但由于经过电源的回路也有低阻抗,因此这种关系并不是严格的。 
 
图5,红色曲线显示的是电路板上无电容时的阻抗;深蓝色曲线是经过重新设计后的阻抗特性;浅蓝色曲线是又增加10nF电容矩阵后的阻抗曲线;绿色曲线表示再次增加1nF电容矩阵后的结果。   
        根据Z=1/(j•C),红色曲线中的直线部分表明电路板本身的电容为74nF。为了使阻抗在1MHz处低于目标阻抗82.5mΩ,电容值至少应为 2μF——几乎是电路板本身电容的30倍。为此首先需要增加22个0.1μF的电容矩阵。图中深蓝色曲线是经过重新设计后的阻抗特性。在大多数的频率范围内,设计满足了阻抗特性的要求。但在带宽的高端,电容的ESL(等效串联电感)、ESR(等效串联电阻)以及由电容间距带来的附加电感使阻抗曲线没有达到阻抗特性要求。   
        由于更小的电容具有更小的ESL和ESR值,因此增加旁路有助于提高其高频特性。图5中的浅蓝色曲线是又增加10nF电容矩阵后的阻抗曲线。绿色曲线表示再次增加1nF电容矩阵后的结果。每一级别电容矩阵的增加都提高了阻抗特性,但结果仍然刚刚满足阻抗特性的要求。   
        在设计的这个阶段,设计者可以增加电磁仿真与电路仿真一起来完成设计。这种方法使设计者可以精确地为低端的阻抗建模,包括电源的负载效应。它也可以直接仿真电源管脚上的噪声从而直接验证电源层噪声,避免对电源层阻抗的过多分析导致的不必要的设计开销。  
        首先应在选定的位置添加输入和输出端口。上文已经在一个IC芯片处添加了端口,接着应该在电源输入端添加一个端口,同时在其它两块芯片的安装位置添加两个端口。然后在SIwave中你可以进行宽频扫描,在整个带宽内获得4×4的S参数散射矩阵。接下来可以使用Full-Wave Spice产生与Spice兼容的电路文件以便在电路仿真环境中进一步分析。   
        在产生的电路文件中,PCB板在电路的中心位置。电路文件还包括 FPGA的模型——伴有一个电流探针和一个差分电压探针的电流源。Full-wave Spice创建的Spice电路还包括上文提到的三个电容矩阵。如果在IC处再增加第四个电容矩阵将进一步减小高端阻抗。电路还包括一个直流电源,电源伴有少量容值从1nF到100μF的退耦电容。另外还包括其它两个IC芯片的模型,周围伴有少量100nF的电容矩阵。 
 
图6,蓝色和绿色曲线分别表示在没有添加和添加最后一组电容矩阵后IC芯片的电源完整性曲线;红色曲线代表芯片输入电流的突变。   
        图6显示了FPGA的电源电压的噪声仿真结果。红色曲线代表芯片输入电流的突变——在0.2纳秒内电流由0A变化到2A。蓝色曲线表示没有添加最后一组电容矩阵时IC芯片的电压曲线。与3.3V相比,电压的波动已经很小了,但还是超过了5%的规范要求。绿色曲线表示添加了第四组电容矩阵后电压的波动曲线,最终的设计满足了电源噪声小于165mV的规范要求。 
        可以用同样的方法分析电路板上其它的芯片,保证他们不受电源压降和地弹的影响。在本例中另外两芯片分别吸收100mA和50mA电流,相对来说,它们对噪声的贡献是很小的。
  高速电路的PCB板级设计是十分具有挑战性的。为了保证电路的正确工作,需要精心设计电路的PDS,包括在电路板上添加数以百计的退耦电容,并且根据需要选择合适的电容值及其位置。采用对虚拟原型进行仿真的方法替代反复试验的设计方法来优化电路板的电源完整性设计,可以有效缩短设计周期并且节约设计成本。


载自网络员微信(pqw834322840!

稿//广// 13237418207

亿~

💬 👍 ❤️ 持!

电子芯期天 致力于分享各种电子电路开发设计资料及经验.
评论
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 495浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 197浏览
  • 随着AI大模型训练和推理对计算能力的需求呈指数级增长,AI数据中心的网络带宽需求大幅提升,推动了高速光模块的发展。光模块作为数据中心和高性能计算系统中的关键器件,主要用于提供高速和大容量的数据传输服务。 光模块提升带宽的方法有两种:1)提高每个通道的比特速率,如直接提升波特率,或者保持波特率不变,使用复杂的调制解调方式(如PAM4);2)增加通道数,如提升并行光纤数量,或采用波分复用(CWDM、LWDM)。按照传输模式,光模块可分为并行和波分两种类型,其中并行方案主要应用在中短距传输场景中成本
    hycsystembella 2025-01-25 17:24 133浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 301浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 1046浏览
  • 飞凌嵌入式基于瑞芯微RK3562系列处理器打造的FET3562J-C全国产核心板,是一款专为工业自动化及消费类电子设备设计的产品,凭借其强大的功能和灵活性,自上市以来得到了各行业客户的广泛关注。本文将详细介绍如何启动并测试RK3562J处理器的MCU,通过实际操作步骤,帮助各位工程师朋友更好地了解这款芯片。1、RK3562J处理器概述RK3562J处理器采用了4*Cortex-A53@1.8GHz+Cortex-M0@200MHz架构。其中,4个Cortex-A53核心作为主要核心,负责处理复杂
    飞凌嵌入式 2025-01-24 11:21 168浏览
  • 不让汽车专美于前,近年来哈雷(Harley-Davidson)和本田(Honda)等大型重型机车大厂的旗下车款皆已陆续配备车载娱乐系统与语音助理,在路上也有越来越多的普通机车车主开始使用安全帽麦克风,在骑车时透过蓝牙连线执行语音搜寻地点导航、音乐播放控制或免持拨打接听电话等各种「机车语音助理」功能。客户背景与面临的挑战以本次分享的客户个案为例,该客户是一个跨国车用语音软件供货商,过往是与车厂合作开发前装车机为主,且有着多年的「汽车语音助理」产品经验。由于客户这次是首度跨足「机车语音助理」产品,因
    百佳泰测试实验室 2025-01-24 17:00 86浏览
  • 前篇文章中『服务器散热效能不佳有解吗?』提到气冷式的服务器其散热效能对于系统稳定度是非常重要的关键因素,同时也说明了百佳泰对于散热效能能提供的协助与服务。本篇将为您延伸说明我们如何进行评估,同时也会举例在测试过程中发现的问题及改善后的数据。AI服务器的散热架构三大重点:GPU导风罩:尝试不同的GPU导风罩架构,用以集中服务器进风量,加强对GPU的降温效果。GPU托盘:改动GPU托盘架构,验证出风面积大小对GPU散热的影想程度。CPU导风罩:尝试封闭CPU导风罩间隙,集中风流,验证CPU降温效果。
    百佳泰测试实验室 2025-01-24 16:58 67浏览
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 177浏览
  • 项目展示①正面、反面②左侧、右侧项目源码:https://mbb.eet-china.com/download/316656.html前言为什么想到要做这个小玩意呢,作为一个死宅,懒得看手机,但又想要抬头就能看见时间和天气信息,于是就做个这么个小东西,放在示波器上面正好(示波器外壳有个小槽,刚好可以卡住)功能主要有,获取国家气象局的天气信息,还有实时的温湿度,主控采用ESP32,所以后续还可以开放更多奇奇怪怪的功能,比如油价信息、股票信息之类的,反正能联网可操作性就大多了原理图、PCB、面板设计
    小恶魔owo 2025-01-25 22:09 181浏览
  • 书接上回:【2022年终总结】阳光总在风雨后,启航2023-面包板社区  https://mbb.eet-china.com/blog/468701-438244.html 总结2019,松山湖有个欧洲小镇-面包板社区  https://mbb.eet-china.com/blog/468701-413397.html        2025年该是总结下2024年的喜怒哀乐,有个好的开始,才能更好的面对2025年即将
    liweicheng 2025-01-24 23:18 148浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 833浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 171浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 217浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 229浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦