IPv4:超网,你是我的“神”!

原创 中兴文档 2022-11-16 07:00

我们都学过把原本大网络分成若干小网络的划分子网。但是大家可曾听说过把原本数量众多的小网络汇聚成一个大网络的超网吗?

没有错!我们今天的主角——构成超网,就是通过对IP地址的原有格式进行升级重组,进而产生的一种更为神奇的组网方式。

究竟有多“神奇”呢?让我们接着往下看

01

超网到底是什么东西?

构成超网也称CIDR(Classless Inter-Domain Routing,无类别域间路由选择)。

简单来说,它就是一种将多个同类IP地址聚合成一个”地址块“的方法。超网的诞生使我们可以更加有效地分配 IPv4地址空间。

超网的运用可以使IPv6在大规模使用前容许互联网的规模继续增长。


02

为什么要构成超网?

在传统的按照IP地址分类的方法中,不管是哪一类地址,网络号和主机号所占的长度都是固定不变的,只要确定了这个地址的网络号,那就是固定长度。

这种“顽固”的分类方法不仅使用起来不太灵活,同时也直接导致了路由器在交换路由表时所产生信息的冗余。

因此采用路由聚合构造超网,有利于减少路由器之间的路由选择信息的交换,从而提高了整个互联网的性能,避免路由信息的冗余。构成超网在进行一番聚合操作后,原本包含成千上万条转发信息的路由表摇身一变,“瘦”成了可能只有几条路由表项的路由表Mini。

03

超网是如何进行聚合的?

接下来让我们看个小例子,如下图所示,在没有进行构造超网之前, 路由器每进行一次路由信息交换,R2就会收到R1更新的5条路由信息。

(此处省略十进制与二进制的转换关系,毕竟我们都是机智的通信人

而构成超网会把网络前缀都相同的IP地址组成一个“CIDR地址块”,又称聚合地址块。

将上图的五条地址转为二进制后,我们发现它们的前20位都是相同的,于是乎,将这20位取出来作为地址块中的共同前缀,而剩余的12位将默认补0作为地址块中的主机号。

这五条地址信息进行聚合后,就形成了一个CIDR地址块:168.100.128.0/20。此时,R2在接收R1的路由转发表时,就只会收到一条CIDR地址信息了。


Tips

CIDR还使用“斜线记法”,即在IP地址后面加上斜线“/”,然后写上网络前缀所占的位数。

我们只要知道CIDR地址块中的任何一个地址,再将地址中的主机号改成全0或全1,就可以得到这个地址块中的最小地址和最大地址,而最大地址和最小地址之间所包含的这一片连续的地址,都可以用这个CIDR地址块来表示。同时,根据地址块中主机号的位数n,我们也可以得到这个地址块中可以指派的地址数:2n-2。


Tips

“减2”是因为主机号为全0和全1的两个地址为特殊地址,一般不作为源地址或者目的地址使用。

聚合得出的168.100.128.0/20,把它展开成二进制后,这个地址所在的地址块中的最小地址和最大地址可以很方便地得出,如下表所示。

最小地址168.100.128.010101000.01100100.1000 0000.00000000
最大地址168.100.143.25510101000.01100100.1000 1111.11111111

不难算出,这个地址块中能够包含4096个地址(4094个可以指派的地址)。我们可以用地址块中的最小地址和网络前缀的位数指明这个地址块。例如,上面的最小地址块可记为168.100.128.0/20。

我们惊奇地发现,这个最小地址居然与前文提到的聚合地址时一模一样的呀!


04

超网是如何进行匹配的?

那既然提到了CIDR地址块,就不能不提到与之相对应的最长前缀匹配机制。

这是因为我们在查找路由表项进行路由选择时可能得到不止一个匹配结果。这样就带来一个问题:我们应当从这些匹配的结果中选择哪一条路由呢?

直接公布正确答案:应当从匹配结果中选择具有最长网络前缀的路由。

当路由器收到一个IP数据包时,它会将数据包的目的IP地址与自己本地路由表中的所有路由表项分别进行逐位对比,对比完毕后,选择与之匹配度最长的路由表项。

举个例子:

假如本座5楼现在收到了一封X部门发往Y部门的邮件,已知Y部门的IP地址为:192.31.71.128,途经5楼的一个路由器现有的路由表项信息分别为:192.31.71.0/26、192.31.68.0/22,那么该路由器在收到这封邮件后应该发往哪个下一跳地址呢?

路由表项对应的子网掩码下一跳地址
192.31.71.0/2611111111.11111111.11111111.11000000192.31.31.19
192.31.68.0/2211111111.11111111.11111100.00000000192.31.31.89
目的地址 :192.31.71.128
所对应的二进制数为:11000000.00011111.01000111.10000000

Tips

这里需要解释的是,虽然CIDR不使用子网了,但由于目前仍有一些网络还在使用子网划分和子网掩码,为了更方便地进行路由选择,CIDR所使用的32位地址掩码也可继续称为子网掩码。

例如,/20地址块的地址掩码是:11111111 11111111 11110000 00000000 (20个连续的1)。斜线记法中,斜线后面的数字就是地址掩码中1的个数。

将每一个路由表项所对应的子网掩码与目的地址的二进制展开式两两进行“逻辑与”运算后再转换为十进制可得:192.31.71.0、192.31.68.0,运算步骤如下图所示:

我们发现:经过运算后所得到的地址都与对应路由表项相匹配,说明表中两条路由信息都可以作为下一跳地址进行分配。

But!根据最长前缀匹配机制,我们应该选择路由表项1所对应的下一跳地址作为转发地址,这是因为网络前缀越长,地址块越小,路由就越具体。

05
总结一下下~
  • CIDR消除了传统的A,B,C类地址和划分子网的概念,更有效地分配IPv4的地址空间,使IP地址从三级编址(网络号,子网号,主机号)又回到无分类的两级编址,如下图所示。

  • CIDR还使用“斜线记法”,即在IP地址后面加上“/”然后指明网络前缀所占的位数。CIDR把网络前缀都相同的连续IP地址组成一个“CIDR地址块”,即构成超网。

  • 在使用CIDR时,在路由表中可能会有不止一个匹配结果,这时应当从所有匹配结果中选择能够匹配更长网络前缀的路由,因为网络前缀越长,其地址块就越小,所得路由就越具体。

今天超网就说到这儿啦~有疑问欢迎评论区留言喔!

风里雨里,小编评论区等你~

我们是一群平均从业年限5+的通信专业工程师。
关注我们,带你了解通信世界的精彩!

中兴文档 通俗易懂且高颜值的通讯技术文档!
评论
  •                                                窗        外       年底将近,空气变得格外寒冷,估计这会儿北方已经是千里
    广州铁金刚 2024-12-23 11:49 163浏览
  • 百佳泰特为您整理2024年12月各大Logo的最新规格信息。——————————USB▶ 百佳泰获授权进行 USB Active Cable 认证。▶ 所有符合 USB PD 3.2 标准的产品都有资格获得USB-IF 认证——————————Bluetooth®▶ Remote UPF Testing针对所有低功耗音频(LE Audio)和网格(Mesh)规范的远程互操作性测试已开放,蓝牙会员可使用该测试,这是随时测试产品的又一绝佳途径。——————————PCI Express▶ 2025年
    百佳泰测试实验室 2024-12-20 10:33 194浏览
  • ALINX 正式发布 AMD Virtex UltraScale+ 系列 FPGA PCIe 3.0 综合开发平台 AXVU13P!这款搭载 AMD 16nm 工艺 XCVU13P 芯片的高性能开发验证平台,凭借卓越的计算能力和灵活的扩展性,专为应对复杂应用场景和高带宽需求而设计,助力技术开发者加速产品创新与部署。随着 5G、人工智能和高性能计算等领域的迅猛发展,各行业对计算能力、灵活性和高速数据传输的需求持续攀升。FPGA 凭借其高度可编程性和实时并行处理能力,已成为解决行业痛点的关
    ALINX 2024-12-20 17:44 211浏览
  • 耳机虽看似一个简单的设备,但不仅只是听音乐功能,它已经成为日常生活和专业领域中不可或缺的一部分。从个人娱乐到专业录音,再到公共和私人通讯,耳机的使用无处不在。使用高质量的耳机不仅可以提供优良的声音体验,还能在长时间使用中保护使用者听力健康。耳机产品的质量,除了验证产品是否符合法规标准,也能透过全面性的测试和认证过程,确保耳机在各方面:从音质到耐用性,再到用户舒适度,都能达到或超越行业标准。这不仅保护了消费者的投资,也提升了该公司在整个行业的产品质量和信誉!客户面临到的各种困难一家耳机制造商想要透
    百佳泰测试实验室 2024-12-20 10:37 272浏览
  • 随着工业自动化和智能化的发展,电机控制系统正向更高精度、更快响应和更高稳定性的方向发展。高速光耦作为一种电气隔离与信号传输的核心器件,在现代电机控制中扮演着至关重要的角色。本文将详细介绍高速光耦在电机控制中的应用优势及其在实际工控系统中的重要性。高速光耦的基本原理及优势高速光耦是一种光电耦合器件,通过光信号传递电信号,实现输入输出端的电气隔离。这种隔离可以有效保护电路免受高压、电流浪涌等干扰。相比传统的光耦,高速光耦具备更快的响应速度,通常可以达到几百纳秒到几微秒级别的传输延迟。电气隔离:高速光
    晶台光耦 2024-12-20 10:18 219浏览
  • 国产数字隔离器已成为现代电子产品中的关键部件,以增强的性能和可靠性取代了传统的光耦合器。这些隔离器广泛应用于医疗设备、汽车电子、工业自动化和其他需要强大信号隔离的领域。准确测试这些设备是确保其质量和性能的基本步骤。如何测试数字隔离器测试数字隔离器需要精度和正确的工具集来评估其在各种条件下的功能和性能。以下设备对于这项任务至关重要:示波器:用于可视化信号波形并测量时序特性,如传播延迟、上升时间和下降时间。允许验证输入输出信号的完整性。频谱分析仪:测量电磁干扰(EMI)和其他频域特性。有助于识别信号
    克里雅半导体科技 2024-12-20 16:35 183浏览
  • Supernode与艾迈斯欧司朗携手,通过Belago红外LED实现精准扫地机器人避障;得益于Belago出色的红外补光功能,使扫地机器人能够大大提升其识别物体的能力,实现精准避障;Belago点阵照明器采用迷你封装,兼容标准无铅回流工艺,适用于各种3D传感平台,包括移动设备、物联网设备和机器人。全球领先的光学解决方案供应商艾迈斯欧司朗(瑞士证券交易所股票代码:AMS)近日宣布,与国内领先的多行业三维视觉方案提供商超节点创新科技(Supernode)双方联合推出采用艾迈斯欧司朗先进Belago红
    艾迈斯欧司朗 2024-12-20 18:55 196浏览
  • 光耦固态继电器(SSR)作为现代电子控制系统中不可或缺的关键组件,正逐步取代传统机械继电器。通过利用光耦合技术,SSR不仅能够提供更高的可靠性,还能适应更加复杂和严苛的应用环境。在本文中,我们将深入探讨光耦固态继电器的工作原理、优势、挑战以及未来发展趋势。光耦固态继电器:如何工作并打破传统继电器的局限?光耦固态继电器通过光电隔离技术,实现输入信号与负载之间的电气隔离。其工作原理包括三个关键步骤:光激活:LED接收输入电流并发出与其成比例的光信号。光传输:光电传感器(如光电二极管或光电晶体管)接收
    腾恩科技-彭工 2024-12-20 16:30 155浏览
  • 汽车行业的变革正愈演愈烈,由交通工具到“第三生活空间”。业内逐渐凝聚共识:汽车的下半场在于智能化。而智能化的核心在于集成先进的传感器,以实现高等级的智能驾驶乃至自动驾驶,以及更个性、舒适、交互体验更优的智能座舱。毕马威中国《聚焦电动化下半场 智能座舱白皮书》数据指出,2026年中国智能座舱市场规模将达到2127亿元,5年复合增长率超过17%。2022年到2026年,智能座舱渗透率将从59%上升至82%。近日,在SENSOR CHINA与琻捷电子联合举办的“汽车传感系列交流会-智能传感专场”上,艾
    艾迈斯欧司朗 2024-12-20 19:45 288浏览
  • 光耦合器,也称为光隔离器,是用于电气隔离和信号传输的多功能组件。其应用之一是测量电路中的电压。本文介绍了如何利用光耦合器进行电压测量,阐明了其操作和实际用途。使用光耦合器进行电压测量的工作原理使用光耦合器进行电压测量依赖于其在通过光传输信号的同时隔离输入和输出电路的能力。该过程包括:连接到电压源光耦合器连接在电压源上。输入电压施加到光耦合器的LED,LED发出的光与施加的电压成比例。光电二极管响应LED发出的光由输出侧的光电二极管或光电晶体管检测。随着LED亮度的变化,光电二极管的电阻相应减小,
    腾恩科技-彭工 2024-12-20 16:31 211浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦