串口作为单片机开发的一个常用的外设,应用范围非常广。大部分时候,串口需要接收处理的数据长度是不定的。那么,怎样才能判断一帧数据是否结束呢?今天,我们就以STM32单片机为例,介绍几种接收不定长数据的方法。
首先,我们需要打开一个串口,使用STM32CubeMx来配置,如下:
然后打开串口中断、添加发送和接收的DMA,DMA参数设置为默认即可,如下图所示(DMA可根据自身需求选择是否打开):
配置一下时钟等,点击生成代码,这样就可以使用串口了。首先我们定义一个串口接收的结构体,并定义一个结构体变量,如下:
#define RX_MAXLEN 200 //最大接收数据长度
typedef struct{
uint8_t RxBuf[RX_MAXLEN];//接收缓存
uint16_t RxCnt; //接收数据计数
uint16_t RxLen; //接收数据长度
uint8_t RxStart; //开始接收标志
uint8_t RxFlag; //一帧数据接收完成标志
}Uart_Tpye_t;
Uart_Tpye_t Uart1;
下面介绍几种接收数据的方法:
1、空闲中断
空闲中断可以配合接收中断或DMA来使用。
当使用DMA+空闲中断时,需要在初始化完成后手动打开空闲中断和DMA接收。
__HAL_UART_ENABLE_IT(&huart1,UART_IT_IDLE);//打开串口空闲中断
HAL_UART_Receive_DMA(&huart1, Uart1.RxBuf, RX_MAXLEN); //串口DMA接收数据
//串口空闲中断
void UART_IDLECallBack(UART_HandleTypeDef *huart)
{
uint32_t temp;
/*uart1 idle processing function*/
if(huart == &huart1)
{
if((__HAL_UART_GET_FLAG(huart,UART_FLAG_IDLE) != RESET))
{
__HAL_UART_CLEAR_IDLEFLAG(&huart1);//清除标志位
/*your own code*/
HAL_UART_DMAStop(&huart1);//停止DMA
Uart1.RxLen = RX_MAXLEN - __HAL_DMA_GET_COUNTER(&hdma_usart1_rx);// 获取DMA中传输的数据个数
Uart1.RxFlag = 1;
HAL_UART_Receive_DMA(&huart1,Uart1.RxBuf,RX_MAXLEN); //开启下次接收
}
}
}
if(Uart1.RxFlag == 1)//接收完一帧数据
{
printf("Rev %d Bytes\r\n",Uart1.RxLen);
Uart1.RxFlag = 0;
}
__HAL_UART_ENABLE_IT(&huart1,UART_IT_IDLE);//打开串口空闲中断
HAL_UART_Receive_IT(&huart1, &RevByte, 1); //串口中断接收数据
uint8_t RevByte;
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
if(huart->Instance==USART1)
{
Uart1.RxBuf[Uart1.RxCnt]=RevByte;
Uart1.RxCnt++;
if(Uart1.RxCnt==RX_MAXLEN)
{
Uart1.RxCnt = RX_MAXLEN-1;
}
HAL_UART_Receive_IT(&huart1, &RevByte, 1); //串口中断接收数据
}
}
//串口空闲中断
void UART_IDLECallBack(UART_HandleTypeDef *huart)
{
uint32_t temp;
/*uart1 idle processing function*/
if(huart == &huart1)
{
if((__HAL_UART_GET_FLAG(huart,UART_FLAG_IDLE) != RESET))
{
__HAL_UART_CLEAR_IDLEFLAG(&huart1);//清除标志位
Uart1.RxFlag = 1;
Uart1.RxLen = Uart1.RxCnt;
Uart1.RxCnt = 0;
}
}
}
同样,在主程序中判断一帧数据的接收完成并处理。
2、特点协议判断帧头帧尾及长度
有时候我们需要自己定义协议传输数据,这时候就可以在通讯协议里添加特点的帧头帧尾以及数据长度字节,通过判断这些字节来判断数据的开始和结束。
假设定义一个简单的传输协议如下:
帧头 | 数据长度,1字节 | 数据,N字节 |
0x5A,0xA5 | 数据部分的字节数 | 有效数据 |
HAL_UART_Receive_IT(&huart1, &RevByte, 1); //串口中断接收数据
//串口接收中断回调函数
uint8_t RevByte;
uint16_t RevTick = 0;
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
static uint16_t Rx_len;
if(huart->Instance==USART1)
{
Uart1.RxBuf[Uart1.RxCnt]=RevByte;
switch(Uart1.RxCnt)
{
case 0:
if(Uart1.RxBuf[Uart1.RxCnt] == 0x5A)//帧头1正确
Uart1.RxCnt++;
else
Uart1.RxCnt = 0;
break;
case 1:
if(Uart1.RxBuf[Uart1.RxCnt] == 0xA5)//帧头2正确
Uart1.RxCnt++;
else
Uart1.RxCnt = 0;
break;
case 2:
Rx_len = Uart1.RxBuf[Uart1.RxCnt];
Uart1.RxCnt++;
break;
default:
Uart1.RxCnt++;
if((Rx_len+3) == Uart1.RxCnt)//数据接收完成
{
Uart1.RxFlag = 1;
Uart1.RxLen = Uart1.RxCnt;
Uart1.RxCnt = 0;
}
break;
}
HAL_UART_Receive_IT(&huart1, &RevByte, 1); //串口中断接收数据
}
}
//串口接收中断回调函数
uint8_t RevByte;
uint16_t RevTick = 0;
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
if(huart->Instance==USART1)
{
Uart1.RxBuf[Uart1.RxCnt]=RevByte;
Uart1.RxCnt++;
Uart1.RxStart = 1;//开始接收标志
RevTick = 0;//计时清零
if(Uart1.RxCnt==RX_MAXLEN)
{
Uart1.RxCnt = RX_MAXLEN-1;
}
HAL_UART_Receive_IT(&huart1, &RevByte, 1); //串口中断接收数据
}
}
//串口接收超时判断,该函数在Systick中断(1ms中断一次)中调用
void UartTimeOut()
{
if(Uart1.RxStart == 1)
{
RevTick++;
if(RevTick > 2)
{
Uart1.RxLen = Uart1.RxCnt;
Uart1.RxCnt = 0;
Uart1.RxStart = 0;
Uart1.RxFlag = 1;
}
}
}
HAL_UART_Receive_IT(&huart1, &RevByte, 1); //串口中断接收数据
同样,在主程序中判断一帧数据的接收完成并处理。测试结果就不贴了。
4、总结
上面几种方式都可以实现串口接收不定长数据,各有优缺点,可根据实际需求选择用哪种。但需要注意的是,上面的例程只是简单地接收数据,在实际应用中,还需要考虑连续接收多帧数据的情况。到底是缓存之后处理,还是舍弃后面的数据,都需要自己写程序实现。
END
来源:嵌入式技术开发