PCB上串扰产生的三种机制

原创 加油射频工程师 2022-11-14 12:40

PCB上的串扰的产生机制,可以认为有三种:电感耦合,电容耦合还有共阻耦合(common-impedance coupling)。


电感/电容耦合

假设两条微带线,中心到中心的距离为d,如下图所示。

当信号沿着传输线传播时,微带线周围开始有电场线和磁场线。

但是,这些电场线和磁场线并不是只在信号和它相关的回路中,而是会延伸到周围区域。如下图所示。

从传输线发出的电场终止与任何相邻的金属结构;传输线周围的磁场也会部分环绕在任何相邻的金属结构周围。


那如果相邻的金属结构恰好是一根信号传输线呢?

则该根传输线会由于接收到的施扰微带线产生的电磁场,而产生相应的电流和电压。


很显然,如果两条传输线之间的间隔增加,信号传输线接收到的场会迅速下降。


但是,如果它们足够近,则相邻信号传输线则会上产生的干扰电流。而这些干扰电流,和传输线上本来的信号电流一样,也会经历反射、失真和辐射。

也就是说,如果有个很脏的微带线A,它旁边有个很干净的微带线B,则B就会被A弄脏,而且如果B正好靠近输出端,则B就会把从A耦合过来的噪声辐射出去。


微带线之间的电场和磁场耦合,分别被称为电容和电感耦合。 

电容耦合和电感耦合,它们各自对串扰的影响很大程度上取决于电路布局。


下图所示,是串扰的简化模型,包含了PCB上传输线之间的电容和电感耦合。

CG,存在于微带线和参考平面之间,会影响微带线的特性阻抗和信号传播延迟。

CM,  存在于微带线之间,是不希望的电容耦合。

LA和LV分别代表施扰和受扰微带线的自感,会影响微带线的特性阻抗和信号传播延迟。

LM,代表两跟微带线之间的互感 LM ,会导致两个电路之间的电感耦合。


在电小尺寸的微带线中,电容耦合表现为与受扰线并联的电流源,电感耦合表现为与受扰线串联的电压源。

具体关系,如下列式子所示:

其中,IC和VL分别是受扰微带线中的电容感应电流和电感感应电压,这是由于施扰微带线中的源电压 VS 和电流 IS 的变化而引起的。


实际情况中,电容和电感串扰机制同时存在。


电容耦合,在受扰微带线上产生的电容感应电流会向两端传播,即分别向前传播、朝向远端ICF,和向后传播、朝向近端ICN。

电感耦合,在受扰微带线上产生的电感感应电压,在受扰微带线上产生电流(ILF,ILN),其方向与IS相反。(参考文献中,IILF,ILN的方向可能标注错了,这里改了一下,上图红色标注)


因此,电容耦合和电感耦合信号在向后传播时,电流叠加,耦合增强;在前向传播时,电流趋于抵消。

向后流动的总耦合信号称为“反向串扰”或“近端串扰”(NEXT),而向前流动(实际上抵消)的总耦合信号称为“前向串扰”或“远端串扰” ”(FEXT)。 


近端串扰和远端串扰的特征显着不同:近端串扰是一个恒定幅度的脉冲,其脉冲宽度为走线之间耦合区域传播时间的两倍,而远端串扰的特点是窄脉冲,其宽度等于干扰信号的transition time,信号度随着走线之间的耦合区域的增加而增加。


那怎样减少电感和电容耦合呢?

答案就是,减小微带线和参考平面的距离。

微带线与参考平面之间距离减小,CG增加,电容耦合显著减小。 

微带线与参考平面之间距离减小,参考平面成为首选返回路径,电感耦合也大大减少。


在数字电路中,由于数字驱动器的低阻抗特性,电感耦合比电容耦合更占主导地位,而电容耦合在高阻抗(通常是模拟)电路中更占主导地位。


共阻抗耦合

PCB 中的第三种也是非常重要的耦合机制是共阻抗耦合。

 

施扰微带线的回流路径和受扰微带线的回流路径公用一部分,从而产生共阻抗耦合。

当嘈杂的大电流(例如数字)电路与敏感(例如模拟)电路共享公共返回路径时,结果就是,歇菜。


高频信号的回流,大部分存在于微带线下方的参考平面上,但是有一小部分,会扩散到两侧。

其在参考平面上的回流密度,可由下式表示:

如上图所示,JGP(d)A和JGP(d)V分别是施扰微带线和受扰微带线的电流密度分布。两者交叠的部分,即上图中的灰色部分,即是"影响区域",这部分决定了两根微带线之间的影响程度。


施扰微带线回流的一部分,在受扰回流路径中流动,因此施扰微带线上的噪声就被耦合到受扰微带线中。

举个例子(感觉原文中的数据有点错误,这边按照我的理解改了一下):

假设一个高速大电流的MCU和模拟电路公用一个参考平面。模拟电路中包含一个24 位 A/D 转换器,假设其电源为1V,则其最低有效位相当于为1/2^24=59nV。

假设参考平面的阻抗为40uohm,则59nV对应电流为1.5mA。

假设,MCU需要10A的电流,则1.5mA,相等于10A的数字电流的 0.015%。

为了避免干扰,必须增加数字和模拟迹线之间的必要间隔 d,以便 99.985% 的数字回流包含在距信号迹线中心线的距离内d。

假设高度h为10 mil ,这需要大于 200 mil(或 5 mm)的间距 d。这个宽度,在现代 PCB 设计中几乎不可能实现。

此时,分割参考平面,是一种解决这种矛盾的方法。


参考文献:grounds for grounding

评论
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 182浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 73浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 41浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 221浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 150浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 53浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 101浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 164浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 122浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 399浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 112浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 186浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦