PCB上串扰产生的三种机制

原创 加油射频工程师 2022-11-14 12:40

PCB上的串扰的产生机制,可以认为有三种:电感耦合,电容耦合还有共阻耦合(common-impedance coupling)。


电感/电容耦合

假设两条微带线,中心到中心的距离为d,如下图所示。

当信号沿着传输线传播时,微带线周围开始有电场线和磁场线。

但是,这些电场线和磁场线并不是只在信号和它相关的回路中,而是会延伸到周围区域。如下图所示。

从传输线发出的电场终止与任何相邻的金属结构;传输线周围的磁场也会部分环绕在任何相邻的金属结构周围。


那如果相邻的金属结构恰好是一根信号传输线呢?

则该根传输线会由于接收到的施扰微带线产生的电磁场,而产生相应的电流和电压。


很显然,如果两条传输线之间的间隔增加,信号传输线接收到的场会迅速下降。


但是,如果它们足够近,则相邻信号传输线则会上产生的干扰电流。而这些干扰电流,和传输线上本来的信号电流一样,也会经历反射、失真和辐射。

也就是说,如果有个很脏的微带线A,它旁边有个很干净的微带线B,则B就会被A弄脏,而且如果B正好靠近输出端,则B就会把从A耦合过来的噪声辐射出去。


微带线之间的电场和磁场耦合,分别被称为电容和电感耦合。 

电容耦合和电感耦合,它们各自对串扰的影响很大程度上取决于电路布局。


下图所示,是串扰的简化模型,包含了PCB上传输线之间的电容和电感耦合。

CG,存在于微带线和参考平面之间,会影响微带线的特性阻抗和信号传播延迟。

CM,  存在于微带线之间,是不希望的电容耦合。

LA和LV分别代表施扰和受扰微带线的自感,会影响微带线的特性阻抗和信号传播延迟。

LM,代表两跟微带线之间的互感 LM ,会导致两个电路之间的电感耦合。


在电小尺寸的微带线中,电容耦合表现为与受扰线并联的电流源,电感耦合表现为与受扰线串联的电压源。

具体关系,如下列式子所示:

其中,IC和VL分别是受扰微带线中的电容感应电流和电感感应电压,这是由于施扰微带线中的源电压 VS 和电流 IS 的变化而引起的。


实际情况中,电容和电感串扰机制同时存在。


电容耦合,在受扰微带线上产生的电容感应电流会向两端传播,即分别向前传播、朝向远端ICF,和向后传播、朝向近端ICN。

电感耦合,在受扰微带线上产生的电感感应电压,在受扰微带线上产生电流(ILF,ILN),其方向与IS相反。(参考文献中,IILF,ILN的方向可能标注错了,这里改了一下,上图红色标注)


因此,电容耦合和电感耦合信号在向后传播时,电流叠加,耦合增强;在前向传播时,电流趋于抵消。

向后流动的总耦合信号称为“反向串扰”或“近端串扰”(NEXT),而向前流动(实际上抵消)的总耦合信号称为“前向串扰”或“远端串扰” ”(FEXT)。 


近端串扰和远端串扰的特征显着不同:近端串扰是一个恒定幅度的脉冲,其脉冲宽度为走线之间耦合区域传播时间的两倍,而远端串扰的特点是窄脉冲,其宽度等于干扰信号的transition time,信号度随着走线之间的耦合区域的增加而增加。


那怎样减少电感和电容耦合呢?

答案就是,减小微带线和参考平面的距离。

微带线与参考平面之间距离减小,CG增加,电容耦合显著减小。 

微带线与参考平面之间距离减小,参考平面成为首选返回路径,电感耦合也大大减少。


在数字电路中,由于数字驱动器的低阻抗特性,电感耦合比电容耦合更占主导地位,而电容耦合在高阻抗(通常是模拟)电路中更占主导地位。


共阻抗耦合

PCB 中的第三种也是非常重要的耦合机制是共阻抗耦合。

 

施扰微带线的回流路径和受扰微带线的回流路径公用一部分,从而产生共阻抗耦合。

当嘈杂的大电流(例如数字)电路与敏感(例如模拟)电路共享公共返回路径时,结果就是,歇菜。


高频信号的回流,大部分存在于微带线下方的参考平面上,但是有一小部分,会扩散到两侧。

其在参考平面上的回流密度,可由下式表示:

如上图所示,JGP(d)A和JGP(d)V分别是施扰微带线和受扰微带线的电流密度分布。两者交叠的部分,即上图中的灰色部分,即是"影响区域",这部分决定了两根微带线之间的影响程度。


施扰微带线回流的一部分,在受扰回流路径中流动,因此施扰微带线上的噪声就被耦合到受扰微带线中。

举个例子(感觉原文中的数据有点错误,这边按照我的理解改了一下):

假设一个高速大电流的MCU和模拟电路公用一个参考平面。模拟电路中包含一个24 位 A/D 转换器,假设其电源为1V,则其最低有效位相当于为1/2^24=59nV。

假设参考平面的阻抗为40uohm,则59nV对应电流为1.5mA。

假设,MCU需要10A的电流,则1.5mA,相等于10A的数字电流的 0.015%。

为了避免干扰,必须增加数字和模拟迹线之间的必要间隔 d,以便 99.985% 的数字回流包含在距信号迹线中心线的距离内d。

假设高度h为10 mil ,这需要大于 200 mil(或 5 mm)的间距 d。这个宽度,在现代 PCB 设计中几乎不可能实现。

此时,分割参考平面,是一种解决这种矛盾的方法。


参考文献:grounds for grounding

评论 (0)
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 203浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 236浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 279浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 170浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 380浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 235浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 282浏览
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 253浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 181浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 230浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 289浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦