一文读懂|Linux共享内存原理

混说Linux 2022-11-14 11:32

点击左上方蓝色“混说Linux”,选择“设为星标

第一时间看干货文章



 1

在Linux系统中,每个进程都有独立的虚拟内存空间,也就是说不同的进程访问同一段虚拟内存地址所得到的数据是不一样的,这是因为不同进程相同的虚拟内存地址会映射到不同的物理内存地址上。

但有时候为了让不同进程之间进行通信,需要让不同进程共享相同的物理内存,Linux通过 共享内存 来实现这个功能。下面先来介绍一下Linux系统的共享内存的使用。

共享内存使用

1. 获取共享内存

要使用共享内存,首先需要使用 shmget() 函数获取共享内存,shmget() 函数的原型如下:

int shmget(key_t key, size_t size, int shmflg);
  • 参数 key 一般由 ftok() 函数生成,用于标识系统的唯一IPC资源。
  • 参数 size 指定创建的共享内存大小。
  • 参数 shmflg 指定 shmget() 函数的动作,比如传入 IPC_CREAT 表示要创建新的共享内存。

函数调用成功时返回一个新建或已经存在的的共享内存标识符,取决于shmflg的参数。失败返回-1,并设置错误码。

2. 关联共享内存

shmget() 函数返回的是一个标识符,而不是可用的内存地址,所以还需要调用 shmat() 函数把共享内存关联到某个虚拟内存地址上。shmat() 函数的原型如下:

void *shmat(int shmid, const void *shmaddr, int shmflg);
  • 参数 shmid 是 shmget() 函数返回的标识符。
  • 参数 shmaddr 是要关联的虚拟内存地址,如果传入0,表示由系统自动选择合适的虚拟内存地址。
  • 参数 shmflg 若指定了 SHM_RDONLY 位,则以只读方式连接此段,否则以读写方式连接此段。

函数调用成功返回一个可用的指针(虚拟内存地址),出错返回-1。

3. 取消关联共享内存

当一个进程不需要共享内存的时候,就需要取消共享内存与虚拟内存地址的关联。取消关联共享内存通过 shmdt() 函数实现,原型如下:

int shmdt(const void *shmaddr);
  • 参数 shmaddr 是要取消关联的虚拟内存地址,也就是 shmat() 函数返回的值。

函数调用成功返回0,出错返回-1。

共享内存使用例子

下面通过一个例子来介绍一下共享内存的使用方法。在这个例子中,有两个进程,分别为 进程A 和 进程B进程A 创建一块共享内存,然后写入数据,进程B 获取这块共享内存并且读取其内容。

进程A

#include 
#include 
#include 
#include 
#include 

#define SHM_PATH "/tmp/shm"
#define SHM_SIZE 128

int main(int argc, char *argv[])
{
    int shmid;
    char *addr;
    key_t key = ftok(SHM_PATH, 0x6666);
    
    shmid = shmget(key, SHM_SIZE, IPC_CREAT|IPC_EXCL|0666);
    if (shmid < 0) {
        printf("failed to create share memory\n");
        return -1;
    }
    
    addr = shmat(shmid, NULL0);
    if (addr <= 0) {
        printf("failed to map share memory\n");
        return -1;
    }
    
    sprintf(addr, "%s""Hello World\n");
    
    return 0;
}

进程B

#include 
#include 
#include 
#include 
#include 
#include 

#define SHM_PATH "/tmp/shm"
#define SHM_SIZE 128

int main(int argc, char *argv[])
{
    int shmid;
    char *addr;
    key_t key = ftok(SHM_PATH, 0x6666);
    
    char buf[128];
    
    shmid = shmget(key, SHM_SIZE, IPC_CREAT);
    if (shmid < 0) {
        printf("failed to get share memory\n");
        return -1;
    }
    
    addr = shmat(shmid, NULL0);
    if (addr <= 0) {
        printf("failed to map share memory\n");
        return -1;
    }
    
    strcpy(buf, addr, 128);
    printf("%s", buf);
    
    return 0;
}

测试时先运行进程A,然后再运行进程B,可以看到进程B会打印出 “Hello World”,说明共享内存已经创建成功并且读取。

共享内存实现原理

我们先通过一幅图来了解一下共享内存的大概原理,如下图:

通过上图可知,共享内存是通过将不同进程的虚拟内存地址映射到相同的物理内存地址来实现的,下面将会介绍Linux的实现方式。

在Linux内核中,每个共享内存都由一个名为 struct shmid_kernel 的结构体来管理,而且Linux限制了系统最大能创建的共享内存为128个。通过类型为 struct shmid_kernel 结构的数组来管理,如下:

struct shmid_ds {
 struct ipc_perm  shm_perm; /* operation perms */
 int   shm_segsz; /* size of segment (bytes) */
 __kernel_time_t  shm_atime; /* last attach time */
 __kernel_time_t  shm_dtime; /* last detach time */
 __kernel_time_t  shm_ctime; /* last change time */
 __kernel_ipc_pid_t shm_cpid; /* pid of creator */
 __kernel_ipc_pid_t shm_lpid; /* pid of last operator */
 unsigned short  shm_nattch; /* no. of current attaches */
 unsigned short   shm_unused; /* compatibility */
 void    *shm_unused2; /* ditto - used by DIPC */
 void   *shm_unused3; /* unused */
};

struct shmid_kernel
{
 
 struct shmid_ds  u;
 /* the following are private */
 unsigned long  shm_npages; /* size of segment (pages) */
 pte_t   *shm_pages; /* array of ptrs to frames -> SHMMAX */ 
 struct vm_area_struct *attaches; /* descriptors for attaches */
};

static struct shmid_kernel *shm_segs[SHMMNI]; // SHMMNI等于128

从注释可以知道 struct shmid_kernel 结构体各个字段的作用,比如 shm_npages 字段表示共享内存使用了多少个内存页。而 shm_pages 字段指向了共享内存映射的虚拟内存页表项数组等。

另外 struct shmid_ds 结构体用于管理共享内存的信息,而 shm_segs数组 用于管理系统中所有的共享内存。

shmget() 函数实现

通过前面的例子可知,要使用共享内存,首先需要调用 shmget() 函数来创建或者获取一块共享内存。shmget() 函数的实现如下:

asmlinkage long sys_shmget (key_t key, int size, int shmflg)
{
 struct shmid_kernel *shp;
 int err, id = 0;

 down(¤t->mm->mmap_sem);
 spin_lock(&shm_lock);
 if (size < 0 || size > shmmax) {
  err = -EINVAL;
 } else if (key == IPC_PRIVATE) {
  err = newseg(key, shmflg, size);
 } else if ((id = findkey (key)) == -1) {
  if (!(shmflg & IPC_CREAT))
   err = -ENOENT;
  else
   err = newseg(key, shmflg, size);
 } else if ((shmflg & IPC_CREAT) && (shmflg & IPC_EXCL)) {
  err = -EEXIST;
 } else {
  shp = shm_segs[id];
  if (shp->u.shm_perm.mode & SHM_DEST)
   err = -EIDRM;
  else if (size > shp->u.shm_segsz)
   err = -EINVAL;
  else if (ipcperms (&shp->u.shm_perm, shmflg))
   err = -EACCES;
  else
   err = (int) shp->u.shm_perm.seq * SHMMNI + id;
 }
 spin_unlock(&shm_lock);
 up(¤t->mm->mmap_sem);
 return err;
}

shmget() 函数的实现比较简单,首先调用 findkey() 函数查找值为key的共享内存是否已经被创建,findkey() 函数返回共享内存在 shm_segs数组 的索引。如果找到,那么直接返回共享内存的标识符即可。否则就调用 newseg() 函数创建新的共享内存。newseg() 函数的实现也比较简单,就是创建一个新的 struct shmid_kernel 结构体,然后设置其各个字段的值,并且保存到 shm_segs数组 中。

shmat() 函数实现

shmat() 函数用于将共享内存映射到本地虚拟内存地址,由于 shmat() 函数的实现比较复杂,所以我们分段来分析这个函数:

asmlinkage long sys_shmat (int shmid, char *shmaddr, int shmflg, ulong *raddr)
{
 struct shmid_kernel *shp;
 struct vm_area_struct *shmd;
 int err = -EINVAL;
 unsigned int id;
 unsigned long addr;
 unsigned long len;

 down(¤t->mm->mmap_sem);
 spin_lock(&shm_lock);
 if (shmid < 0)
  goto out;

 shp = shm_segs[id = (unsigned int) shmid % SHMMNI];
 if (shp == IPC_UNUSED || shp == IPC_NOID)
  goto out;

上面这段代码主要通过 shmid 标识符来找到共享内存描述符,上面说过系统中所有的共享内存到保存在 shm_segs 数组中。

 if (!(addr = (ulong) shmaddr)) {
  if (shmflg & SHM_REMAP)
   goto out;
  err = -ENOMEM;
  addr = 0;
 again:
  if (!(addr = get_unmapped_area(addr, shp->u.shm_segsz))) // 获取一个空闲的虚拟内存空间
   goto out;
  if(addr & (SHMLBA - 1)) {
   addr = (addr + (SHMLBA - 1)) & ~(SHMLBA - 1);
   goto again;
  }
 } else if (addr & (SHMLBA-1)) {
  if (shmflg & SHM_RND)
   addr &= ~(SHMLBA-1);       /* round down */
  else
   goto out;
 }

上面的代码主要找到一个可用的虚拟内存地址,如果在调用 shmat() 函数时没有指定了虚拟内存地址,那么就通过 get_unmapped_area() 函数来获取一个可用的虚拟内存地址。

 spin_unlock(&shm_lock);
 err = -ENOMEM;
 shmd = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
 spin_lock(&shm_lock);
 if (!shmd)
  goto out;
 if ((shp != shm_segs[id]) || (shp->u.shm_perm.seq != (unsigned int) shmid / SHMMNI)) {
  kmem_cache_free(vm_area_cachep, shmd);
  err = -EIDRM;
  goto out;
 }

上面的代码主要通过调用 kmem_cache_alloc() 函数创建一个 vm_area_struct 结构,在内存管理一章知道,vm_area_struct 结构用于管理进程的虚拟内存空间。

 shmd->vm_private_data = shm_segs + id;
 shmd->vm_start = addr;
 shmd->vm_end = addr + shp->shm_npages * PAGE_SIZE;
 shmd->vm_mm = current->mm;
 shmd->vm_page_prot = (shmflg & SHM_RDONLY) ? PAGE_READONLY : PAGE_SHARED;
 shmd->vm_flags = VM_SHM | VM_MAYSHARE | VM_SHARED
    | VM_MAYREAD | VM_MAYEXEC | VM_READ | VM_EXEC
    | ((shmflg & SHM_RDONLY) ? 0 : VM_MAYWRITE | VM_WRITE);
 shmd->vm_file = NULL;
 shmd->vm_offset = 0;
 shmd->vm_ops = &shm_vm_ops;

 shp->u.shm_nattch++;     /* prevent destruction */
 spin_unlock(&shm_lock);
 err = shm_map(shmd);
 spin_lock(&shm_lock);
 if (err)
  goto failed_shm_map;

 insert_attach(shp,shmd);  /* insert shmd into shp->attaches */

 shp->u.shm_lpid = current->pid;
 shp->u.shm_atime = CURRENT_TIME;

 *raddr = addr;
 err = 0;
out:
 spin_unlock(&shm_lock);
 up(¤t->mm->mmap_sem);
 return err;
 ...
}

上面的代码主要是设置刚创建的 vm_area_struct 结构的各个字段,比较重要的是设置其 vm_ops 字段为 shm_vm_opsshm_vm_ops 定义如下:

static struct vm_operations_struct shm_vm_ops = {
 shm_open,  /* open - callback for a new vm-area open */
 shm_close,  /* close - callback for when the vm-area is released */
 NULL,   /* no need to sync pages at unmap */
 NULL,   /* protect */
 NULL,   /* sync */
 NULL,   /* advise */
 shm_nopage,  /* nopage */
 NULL,   /* wppage */
 shm_swapout  /* swapout */
};

shm_vm_ops 的 nopage 回调为 shm_nopage() 函数,也就是说,当发生页缺失异常时将会调用此函数来恢复内存的映射。

从上面的代码可看出,shmat() 函数只是申请了进程的虚拟内存空间,而共享内存的物理空间并没有申请,那么在什么时候申请物理内存呢?答案就是当进程发生缺页异常的时候会调用 shm_nopage() 函数来恢复进程的虚拟内存地址到物理内存地址的映射。

shm_nopage() 函数实现

shm_nopage() 函数是当发生内存缺页异常时被调用的,代码如下:

static struct page * shm_nopage(struct vm_area_struct * shmd, unsigned long address, int no_share)
{
 pte_t pte;
 struct shmid_kernel *shp;
 unsigned int idx;
 struct page * page;

 shp = *(struct shmid_kernel **) shmd->vm_private_data;
 idx = (address - shmd->vm_start + shmd->vm_offset) >> PAGE_SHIFT;

 spin_lock(&shm_lock);
again:
 pte = shp->shm_pages[idx]; // 共享内存的页表项
 if (!pte_present(pte)) {   // 如果内存页不存在
  if (pte_none(pte)) {
   spin_unlock(&shm_lock);
   page = get_free_highpage(GFP_HIGHUSER); // 申请一个新的物理内存页
   if (!page)
    goto oom;
   clear_highpage(page);
   spin_lock(&shm_lock);
   if (pte_val(pte) != pte_val(shp->shm_pages[idx]))
    goto changed;
  } else {
   ...
  }
  shm_rss++;
  pte = pte_mkdirty(mk_pte(page, PAGE_SHARED));   // 创建页表项
  shp->shm_pages[idx] = pte;                      // 保存共享内存的页表项
 } else
  --current->maj_flt;  /* was incremented in do_no_page */

done:
 get_page(pte_page(pte));
 spin_unlock(&shm_lock);
 current->min_flt++;
 return pte_page(pte);
 ...
}

shm_nopage() 函数的主要功能是当发生内存缺页时,申请新的物理内存页,并映射到共享内存中。由于使用共享内存时会映射到相同的物理内存页上,从而不同进程可以共用此块内存。






往期推荐

嵌入式必懂的 CAN 总线,真的讲到位了!!

一种简易的嵌入式设备系统日志记录方法

一文搞懂 | Linux 内核的 4 大 IO 调度算法

深入理解 USB 通信协议

来都来了,点个在看再走吧~~~



混说Linux 百度研发工程师,分享Linux干货,和大家一起学习!
评论
  • 故障现象 一辆2007款日产天籁车,搭载VQ23发动机(气缸编号如图1所示,点火顺序为1-2-3-4-5-6),累计行驶里程约为21万km。车主反映,该车起步加速时偶尔抖动,且行驶中加速无力。 图1 VQ23发动机的气缸编号 故障诊断接车后试车,发动机怠速运转平稳,但只要换挡起步,稍微踩下一点加速踏板,就能感觉到车身明显抖动。用故障检测仪检测,发动机控制模块(ECM)无故障代码存储,且无失火数据流。用虹科Pico汽车示波器测量气缸1点火信号(COP点火信号)和曲轴位置传感器信
    虹科Pico汽车示波器 2025-01-23 10:46 66浏览
  •     IPC-2581是基于ODB++标准、结合PCB行业特点而指定的PCB加工文件规范。    IPC-2581旨在替代CAM350格式,成为PCB加工行业的新的工业规范。    有一些免费软件,可以查看(不可修改)IPC-2581数据文件。这些软件典型用途是工艺校核。    1. Vu2581        出品:Downstream     
    电子知识打边炉 2025-01-22 11:12 128浏览
  • 临近春节,各方社交及应酬也变得多起来了,甚至一月份就排满了各式约见。有的是关系好的专业朋友的周末“恳谈会”,基本是关于2025年经济预判的话题,以及如何稳定工作等话题;但更多的预约是来自几个客户老板及副总裁们的见面,他们为今年的经济预判与企业发展焦虑而来。在聊天过程中,我发现今年的聊天有个很有意思的“点”,挺多人尤其关心我到底是怎么成长成现在的多领域风格的,还能掌握一些经济趋势的分析能力,到底学过哪些专业、在企业管过哪些具体事情?单单就这个一个月内,我就重复了数次“为什么”,再辅以我上次写的:《
    牛言喵语 2025-01-22 17:10 163浏览
  • 高速先生成员--黄刚这不马上就要过年了嘛,高速先生就不打算给大家上难度了,整一篇简单但很实用的文章给大伙瞧瞧好了。相信这个标题一出来,尤其对于PCB设计工程师来说,心就立马凉了半截。他们辛辛苦苦进行PCB的过孔设计,高速先生居然说设计多大的过孔他们不关心!另外估计这时候就跳出很多“挑刺”的粉丝了哈,因为翻看很多以往的文章,高速先生都表达了过孔孔径对高速性能的影响是很大的哦!咋滴,今天居然说孔径不关心了?别,别急哈,听高速先生在这篇文章中娓娓道来。首先还是要对各位设计工程师的设计表示肯定,毕竟像我
    一博科技 2025-01-21 16:17 153浏览
  • 日前,商务部等部门办公厅印发《手机、平板、智能手表(手环)购新补贴实施方案》明确,个人消费者购买手机、平板、智能手表(手环)3类数码产品(单件销售价格不超过6000元),可享受购新补贴。每人每类可补贴1件,每件补贴比例为减去生产、流通环节及移动运营商所有优惠后最终销售价格的15%,每件最高不超过500元。目前,京东已经做好了承接手机、平板等数码产品国补优惠的落地准备工作,未来随着各省市关于手机、平板等品类的国补开启,京东将第一时间率先上线,满足消费者的换新升级需求。为保障国补的真实有效发放,基于
    华尔街科技眼 2025-01-17 10:44 238浏览
  • Ubuntu20.04默认情况下为root账号自动登录,本文介绍如何取消root账号自动登录,改为通过输入账号密码登录,使用触觉智能EVB3568鸿蒙开发板演示,搭载瑞芯微RK3568,四核A55处理器,主频2.0Ghz,1T算力NPU;支持OpenHarmony5.0及Linux、Android等操作系统,接口丰富,开发评估快人一步!添加新账号1、使用adduser命令来添加新用户,用户名以industio为例,系统会提示设置密码以及其他信息,您可以根据需要填写或跳过,命令如下:root@id
    Industio_触觉智能 2025-01-17 14:14 142浏览
  • 现在为止,我们已经完成了Purple Pi OH主板的串口调试和部分配件的连接,接下来,让我们趁热打铁,完成剩余配件的连接!注:配件连接前请断开主板所有供电,避免敏感电路损坏!1.1 耳机接口主板有一路OTMP 标准四节耳机座J6,具备进行音频输出及录音功能,接入耳机后声音将优先从耳机输出,如下图所示:1.21.2 相机接口MIPI CSI 接口如上图所示,支持OV5648 和OV8858 摄像头模组。接入摄像头模组后,使用系统相机软件打开相机拍照和录像,如下图所示:1.3 以太网接口主板有一路
    Industio_触觉智能 2025-01-20 11:04 194浏览
  • 本文介绍瑞芯微开发板/主板Android配置APK默认开启性能模式方法,开启性能模式后,APK的CPU使用优先级会有所提高。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。源码修改修改源码根目录下文件device/rockchip/rk3562/package_performance.xml并添加以下内容,注意"+"号为添加内容,"com.tencent.mm"为AP
    Industio_触觉智能 2025-01-17 14:09 195浏览
  •  万万没想到!科幻电影中的人形机器人,正在一步步走进我们人类的日常生活中来了。1月17日,乐聚将第100台全尺寸人形机器人交付北汽越野车,再次吹响了人形机器人疯狂进厂打工的号角。无独有尔,银河通用机器人作为一家成立不到两年时间的创业公司,在短短一年多时间内推出革命性的第一代产品Galbot G1,这是一款轮式、双臂、身体可折叠的人形机器人,得到了美团战投、经纬创投、IDG资本等众多投资方的认可。作为一家成立仅仅只有两年多时间的企业,智元机器人也把机器人从梦想带进了现实。2024年8月1
    刘旷 2025-01-21 11:15 635浏览
  • 2024年是很平淡的一年,能保住饭碗就是万幸了,公司业绩不好,跳槽又不敢跳,还有一个原因就是老板对我们这些员工还是很好的,碍于人情也不能在公司困难时去雪上加霜。在工作其间遇到的大问题没有,小问题还是有不少,这里就举一两个来说一下。第一个就是,先看下下面的这个封装,你能猜出它的引脚间距是多少吗?这种排线座比较常规的是0.6mm间距(即排线是0.3mm间距)的,而这个规格也是我们用得最多的,所以我们按惯性思维来看的话,就会认为这个座子就是0.6mm间距的,这样往往就不会去细看规格书了,所以这次的运气
    wuliangu 2025-01-21 00:15 310浏览
  •  光伏及击穿,都可视之为 复合的逆过程,但是,复合、光伏与击穿,不单是进程的方向相反,偏置状态也不一样,复合的工况,是正偏,光伏是零偏,击穿与漂移则是反偏,光伏的能源是外来的,而击穿消耗的是结区自身和电源的能量,漂移的载流子是 客席载流子,须借外延层才能引入,客席载流子 不受反偏PN结的空乏区阻碍,能漂不能漂,只取决于反偏PN结是否处于外延层的「射程」范围,而穿通的成因,则是因耗尽层的过度扩张,致使跟 端子、外延层或其他空乏区 碰触,当耗尽层融通,耐压 (反向阻断能力) 即告彻底丧失,
    MrCU204 2025-01-17 11:30 209浏览
  • 嘿,咱来聊聊RISC-V MCU技术哈。 这RISC-V MCU技术呢,简单来说就是基于一个叫RISC-V的指令集架构做出的微控制器技术。RISC-V这个啊,2010年的时候,是加州大学伯克利分校的研究团队弄出来的,目的就是想搞个新的、开放的指令集架构,能跟上现代计算的需要。到了2015年,专门成立了个RISC-V基金会,让这个架构更标准,也更好地推广开了。这几年啊,这个RISC-V的生态系统发展得可快了,好多公司和机构都加入了RISC-V International,还推出了不少RISC-V
    丙丁先生 2025-01-21 12:10 516浏览
  • 数字隔离芯片是一种实现电气隔离功能的集成电路,在工业自动化、汽车电子、光伏储能与电力通信等领域的电气系统中发挥着至关重要的作用。其不仅可令高、低压系统之间相互独立,提高低压系统的抗干扰能力,同时还可确保高、低压系统之间的安全交互,使系统稳定工作,并避免操作者遭受来自高压系统的电击伤害。典型数字隔离芯片的简化原理图值得一提的是,数字隔离芯片历经多年发展,其应用范围已十分广泛,凡涉及到在高、低压系统之间进行信号传输的场景中基本都需要应用到此种芯片。那么,电气工程师在进行电路设计时到底该如何评估选择一
    华普微HOPERF 2025-01-20 16:50 119浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦