微流控芯片荧光成像在信噪比提升方面取得新突破

原创 MEMS 2022-11-14 00:00

使用传统的硅-玻璃体系能够以各种方式制备微流控芯片,易于硅加工和表面修饰,并且有利于后续应用,例如细胞接种及相关研究。目前,细胞的荧光成像成为研究细胞行为的标准技术。不幸的是,硅流道底部的不均匀表面影响了通过滤光片的光穿透,致使微流控系统中的高灵敏度荧光成像(例如使用全内反射荧光(TIRF)显微镜)出现问题。

据麦姆斯咨询报道,西北工业大学联合捷克科学院(Czech Academy of Science)生物技术研究所(Institute of Biotechnology)及查理大学(Charles University)针对上述问题做了进一步研究,他们发现可以使用绝缘体上硅(SOI)衬底,通过顶部硅层的厚度定义流道深度,以及停止掩埋二氧化硅(SiO2)层的蚀刻来解决这一问题。如此,荧光背景信号下降到原来的五分之一,对应的荧光素检测限从 0.05毫摩尔提升到 50纳摩尔。研究人员证明了使用基于全内反射荧光的单分子检测平坦表面的重要性,与传统的硅晶圆相比,其信噪比提高了超18倍。

典型的荧光光学系统包括:光源、激发滤光片(XF,用于防止不需要的成分激发光并可能干扰结果)、二向色镜(DM,又称双色镜,用于在样品上反射经滤光的激发光),以及一个发射滤光片(MF,用于阻挡滤过的激发光),该系统只允许发射光通过光学探测器,该探测器可以是光电二极管、光电倍增管(PMT)或合适的相机。研究人员使用了高端滤光片,ET系列型号49002(产自美国佛蒙特州贝洛斯福尔斯的Chroma Technology公司),用于异硫氰酸荧光素(FITC)型荧光。


(A)异硫氰酸荧光素(FITC)滤光片组透射图,展示激发滤光片(蓝色)、二向色镜(红色)和发射滤片(绿色)的特性;(B)使用异硫氰酸荧光素滤光片组的Stilla数字聚合酶链式反应(PCR)芯片的荧光图像

研究人员使用纳米光刻工具箱设计微流控芯片(下图A),它有16个带有切向管连接的腔室,每个腔室的面积为15mm²,深度为 100µm,体积为1.5nL,并使用计算机辅助软件可视化单个腔室(下图B)。他们使用传统的微制造技术用于微流控芯片,包括使用两个光刻步骤的图案化硅衬底和阳极键合到硅衬底的非图案化玻璃盖。他们在平坦衬底上进行了两次光刻步骤,这对他们来说,没有任何挑战。接着,他们使用博世(Bosch)工艺和基于六氟化硫(SF6)蚀刻和八氟异丁烯(C4F8)聚合物沉积结合的深反应离子蚀刻(DRIE)。这是一种众所周知的工艺,蚀刻速率极佳。然后,他们使用阳极键合对蚀刻的硅晶片进行封盖,因为玻璃基板上没有图案,这意味着不必遵守严格的对准规则,这是一项容易的制造任务。


基于不同表面的微加工工艺展示

研究人员将两个微流控芯片置于光学显微镜下,并捕获了两个硅衬底的暗场图像,一个由传统硅晶圆制成(下图A1),另一个由SOI晶圆制成(下图A2)。他们观察到了传统硅晶圆制作的腔室底部的强光散射信号,而并没有从基于SOI的腔室观察到散射。正是这种散射导致了荧光的背景问题。他们使用基于配备50倍物镜的Mireau干涉仪的白光光学剖面仪测量表面形貌 ,使用垂直位移干涉模式(VSI)(下图B1,B2)。硅衬底表面的粗糙度比SOI衬底大84倍。


(A)经20倍物镜暗场显微镜蚀刻后的传统硅衬底表面图像;(B)垂直位移干涉模式下SOI衬底(上)与标准硅晶圆衬底(下)的干涉图像;(C)光电倍增管电压作为荧光素浓度的函数,腔室材料类型为参数,纵轴和横轴使用对数刻度;红色表示传统的硅衬底,黑色表示SOI衬底。

研究人员将荧光素溶液填充进微流控芯片腔室,并将该溶液浓度从 1纳摩尔改变至 100微摩尔,同时保持一个空腔作为参考,以确定每个芯片的荧光检测限(LOD)。然后,他们测量了所有腔室的荧光振幅,并根据其绘制出荧光素浓度函数(上图4C)。基于测量,由传统硅衬底制成的微流控芯片的荧光检测限高出约5倍。

在该文章中,研究人员分析了使用微流控芯片进行单分子成像的高端滤光片的特性。

他们着重强调,结束微流控芯片的阳极键合之前的最后一个制造步骤是硅热氧化,硅热氧化在900°C下干燥的氧气(O2)环境中进行,以生长厚度为5nm的二氧化硅(SiO2)层,同时确定腔室表面特性。该环境中的这一步骤去除了可能附着在原始硅表面的所有微量化学物质。硅以及用于阳极键合的玻璃都不显示任何自荧光,并且硅和SOI这两种不同衬底的微流控芯片之间的唯一区别是底部形貌,其余部分相同。因此,无论效果如何,根本原因是它与表面形貌有关,并且这种形貌的去除显著改善了荧光测量(成像)特性。

研究人员发现,在使用硅衬底传统技术制造微流控芯片时,由于与粗糙结构的底部相关的各种可能的影响,高分辨率成像(如用于单分子运动测定的全内反射荧光技术)并没有达到预期的结果。他们研究了这一现象,并证明了用SOI衬底替代传统硅衬底的解决方案,可保证微流控芯片的平坦底部,同时允许全内反射荧光技术通过使用488nm波长的照明来确定单分子运动性,从而最大限度地发挥其潜力。昂贵的SOI晶圆可能会被传统的硅晶圆取代,并允许通过合适的平滑技术(例如基于氢氟酸(HF)/硝酸(HNO3)蚀刻技术)进行微流控腔室蚀刻。无论如何,与芯片制造相比,原始衬底的成本通常是相当低的,尤其是与包括单分子测试在内的后续应用相比,这证明了这种高衬底成本的合理性。

论文链接:
https://www.nature.com/articles/s41598-022-23426-z

延伸阅读:
《光谱成像市场和趋势-2022版》
《微流控初创公司调研》

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论 (0)
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 240浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 647浏览
  • 在印度与巴基斯坦的军事对峙情境下,歼10C的出色表现如同一颗投入平静湖面的巨石,激起层层涟漪,深刻印证了“质量大于数量”这一铁律。军事领域,技术优势就是决定胜负的关键钥匙。歼10C凭借先进的航电系统、强大的武器挂载能力以及卓越的机动性能,在战场上大放异彩。它能够精准捕捉目标,迅速发动攻击,以一敌多却毫不逊色。与之形成鲜明对比的是,单纯依靠数量堆砌的军事力量,在面对先进技术装备时,往往显得力不从心。这一现象绝非局限于军事范畴,在当今社会的各个领域,“质量大于数量”都已成为不可逆转的趋势。在科技行业
    curton 2025-05-11 19:09 49浏览
  • 后摄像头是长这个样子,如下图。5孔(D-,D+,5V,12V,GND),说的是连接线的个数,如下图。4LED,+12V驱动4颗LED灯珠,给摄像头补光用的,如下图。打开后盖,发现里面有透明白胶(防水)和白色硬胶(固定),用合适的工具,清理其中的胶状物。BOT层,AN3860,Panasonic Semiconductor (松下电器)制造的,Cylinder Motor Driver IC for Video Camera,如下图。TOP层,感光芯片和广角聚焦镜头组合,如下图。感光芯片,看着是玻
    liweicheng 2025-05-07 23:55 552浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 688浏览
  • Matter协议是一个由Amazon Alexa、Apple HomeKit、Google Home和Samsung SmartThings等全球科技巨头与CSA联盟共同制定的开放性标准,它就像一份“共生契约”,能让原本相互独立的家居生态在应用层上握手共存,同时它并非另起炉灶,而是以IP(互联网协议)为基础框架,将不同通信协议下的家居设备统一到同一套“语义规则”之下。作为应用层上的互通标准,Matter协议正在重新定义智能家居行业的运行逻辑,它不仅能向下屏蔽家居设备制造商的生态和系统,让设备、平
    华普微HOPERF 2025-05-08 11:40 438浏览
  • 在过去的很长一段时间里,外卖市场呈现出美团和饿了么双寡头垄断的局面。美团凭借先发优势、强大的地推团队以及精细化的运营策略,在市场份额上长期占据领先地位。数据显示,截至2024年上半年,美团外卖以68.2%的市场份额领跑外卖行业,成为当之无愧的行业老大。其业务广泛覆盖,从一线城市的繁华商圈到二三线城市的大街小巷,几乎无处不在,为无数消费者提供便捷的外卖服务。饿了么作为阿里本地生活服务的重要一环,依托阿里强大的资金和技术支持,也在市场中站稳脚跟,以25.4%的份额位居第二。尽管市场份额上与美团有一定
    用户1742991715177 2025-05-06 19:43 132浏览
  • 飞凌嵌入式作为龙芯合作伙伴,隆重推出FET-2K0300i-S全国产自主可控工业级核心板!FET-2K0300i-S核心板基于龙芯2K0300i工业级处理器开发设计,集成1个64位LA264处理器,主频1GHz,提供高效的计算能力;支持硬件ECC;2K0300i还具备丰富的连接接口USB、SDIO、UART、SPI、CAN-FD、Ethernet、ADC等一应俱全,龙芯2K0300i支持四路CAN-FD接口,具备良好的可靠性、实时性和灵活性,可满足用户多路CAN需求。除性价比超高的国产处理器外,
    飞凌嵌入式 2025-05-07 11:54 114浏览
  • 文/郭楚妤编辑/cc孙聪颖‍相较于一众措辞谨慎、毫无掌舵者个人风格的上市公司财报,利亚德的财报显得尤为另类。利亚德光电集团成立于1995年,是一家以LED显示、液晶显示产品设计、生产、销售及服务为主业的高新技术企业。自2016年年报起,无论业绩优劣,董事长李军每年都会在财报末尾附上一首七言打油诗,抒发其对公司当年业绩的感悟。从“三年翻番顺大势”“智能显示我第一”“披荆斩棘幸从容”等词句中,不难窥见李军的雄心壮志。2012年,利亚德(300296.SZ)在深交所创业板上市。成立以来,该公司在细分领
    华尔街科技眼 2025-05-07 19:25 505浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 395浏览
  • 硅二极管温度传感器是一种基于硅半导体材料特性的测温装置,其核心原理是利用硅二极管的电学参数(如正向压降或电阻)随温度变化的特性实现温度检测。以下是其工作原理、技术特点及典型应用:一、工作原理1、‌PN结温度特性‌硅二极管由PN结构成,当温度变化时,其正向电压 VF与温度呈线性负相关关系。例如,温度每升高1℃,VF约下降2 mV。2、‌电压—温度关系‌通过jing确测量正向电压的微小变化,可推算出环境温度值。部分型号(如SI410)在宽温域内(如1.4 K至475 K)仍能保持高线性度。
    锦正茂科技 2025-05-09 13:52 322浏览
  • 温度传感器的工作原理依据其类型可分为以下几种主要形式:一、热电阻温度传感器利用金属或半导体材料的电阻值随温度变化的特性实现测温:l ‌金属热电阻‌(如铂电阻 Pt100、Pt1000):高温下电阻值呈线性增长,稳定性高,适用于工业精密测温。l ‌热敏电阻‌(NTC/PTC):NTC 热敏电阻阻值随温度升高而下降,PTC 则相反;灵敏度高但线性范围较窄,常用于电子设备温控。二、热电偶传感器基于‌塞贝克效应‌(Seebeck effect):两种不同
    锦正茂科技 2025-05-09 13:31 301浏览
  • 文/Leon编辑/cc孙聪颖‍《中国家族企业传承研究报告》显示,超四成“企二代” 明确表达接班意愿,展现出对家族企业延续发展的主动担当。中国研究数据服务平台(CNRDS)提供的精准数据进一步佐证:截至 2022 年,已有至少 280 家上市家族企业完成权杖交接,其中八成新任掌门人为创始人之子,凸显家族企业代际传承中 “子承父业” 的主流模式。然而,对于“企二代” 而言,接棒掌舵绝非易事。在瞬息万变的商业环境中,他们既要在白热化的市场竞争中开拓创新、引领企业突破发展瓶颈,又需应对来自父辈管理层的经
    华尔街科技眼 2025-05-06 18:17 62浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦