ALSA驱动抽象:ASoc理解与分析

原创 漫谈嵌入式 2022-11-12 20:00

最近一直在研究 ALSA 驱动,停了一段时间,突然发现Asla 驱动不是一天两天能讲清楚的。

1. ASoC 概述

ASoC (ALSA System on Chip) ,是建立在标准ALSA驱动层上,为了更好地支持嵌入式处理器和移动设备中的音频Codec的一套软件体系。在ASoc出现之前,内核对于SoC中的音频已经有部分的支持,不过会有一些局限性:

  • Codec驱动与SoC CPU的底层耦合过于紧密,这种不理想会导致代码的重复。
  • 音频事件没有标准的方法来通知用户,例如耳机、麦克风的插拔和检测,这些事件在移动设备中是非常普通的,而且通常都需要特定于机器的代码重新对音频路劲进行配置。
  • 当进行播放或录音时,驱动会让整个codec处于上电状态,这对于PC没问题,但对于移动设备来说,这意味着浪费大量的电量。同时也不支持通过改变过取样频率和偏置电流来达到省电的目的。

ASoC正是为了解决上述种种问题而提出的,目前已经被整合至内核的代码树中:sound/soc。ASoC不能单独存在,他只是建立在标准ALSA驱动上的一个它必须和标准的ALSA驱动框架相结合才能工作。

2. 硬件架构

嵌入式设备的音频系统可以被划分为板载硬件(Machine)、Soc(Platform)、Codec三大部分,如下图所示:

  • Machine :是指某一款机器,可以是某款设备,某款开发板,由此可以看出Machine几乎是不可重用的,每个Machine上的硬件实现可能都不一样,CPU不一样,Codec不一样,音频的输入、输出设备也不一样,Machine为CPU、Codec、输入输出设备提供了一个载体。
  • Platform:一般是指某一个SoC平台,比如s3cxxxx,与音频相关的通常包含该SoC中的时钟、DMA、I2S、PCM等等,只要指定了SoC,那么我们可以认为它会有一个对应的Platform,它只与SoC相关,与Machine无关,这样我们就可以把Platform抽象出来,使得同一款SoC不用做任何的改动,就可以用在不同的Machine中。实际上,把Platform认为是某个SoC更好理解。
  • Codec:字面上的意思就是编解码器,Codec里面包含了I2S接口、D/A、A/D、Mixer、PA(功放),通常包含多种输入(Mic、Line-in、I2S、PCM)和多个输出(耳机、喇叭、听筒,Line-out),Codec和Platform一样,是可重用的部件,同一个Codec可以被不同的Machine使用。嵌入式Codec通常通过I2C对内部的寄存器进行控制。

注释:对于现在的很多嵌入式平台,内部集成了codec,我们在分析时也可以将其划分到codec 上,不同的Soc 内部Codec 有所不同,同时亦可兼容内部codec 和 外部Codec。

3. 软件架构

在软件层面,ASoC也把嵌入式设备的音频系统同样分为3大部分,Machine,Platform和Codec。

  • Machine: Machine 驱动负责处理机器特有的一些控件和音频事件(例如,当播放音频时,需要先行打开一个放大器);单独的Platform 和 Codec驱动是不能工作的,它必须由Machine驱动把它们结合在一起才能完成整个设备的音频处理工作。
  • Platform:它包含了该SoC平台的音频 DMA 和音频接口的配置和控制(I2S,PCM,AC97等等);它也不能包含任何与板子或机器相关的代码。
  • Codec : ASoC 中的一个重要设计原则就是要求Codec驱动是平台无关的,它包含了一些音频的控件(Controls),音频接口,DAMP(动态音频电源管理)的定义和某些Codec IO功能。为了保证硬件无关性,任何特定于平台和机器的代码都要移到 Platform 和Machine驱动中。所有的Codec驱动都要提供以下特性:

Codec DAI 和 PCM的配置信息;Codec的IO控制方式(I2C,SPI等);Mixer和其他的音频控件;Codec的ALSA音频操作接口;

必要时,也可以提供以下功能:

  • DAPM描述信息;
  • DAPM事件处理程序;
  • DAC数字静音控制

4. ASOC 分析

4.1 硬件抽象

通常一个声卡设备,大概包含以下几个物理设备或者外设:

  • Codec:音频编解码控制器,可以是内部Codec(soc 集成),也可以是外部Codec. Codec 通过支持音频编解码,包括模拟麦或者spk, 有的甚至支持数字麦。
  • AMIC/SPK/DMIC:纯硬件电路。麦克风或者spk,软件无需干预。
  • DMA:对于硬件设备的数据量,大多数情况都是通过dma 搬运来提高效率。
  • cpu:整个soc 平台,主要提供音频通信接口来实现和codec 传输。比如(I2S/PDM等)
  • DAI:音频接口,抽象概念,比如I2S等。
  • Card:抽象概念,声卡。
  • Capture:抽象概念,表示录音设备
  • Playback:抽象概念,表示软件设备

对于大多数平台,dma 和 i2s/pdm 等集成在一个soc 上,有些甚至集成了Codec。

4.2 音频数据流

音频数据的数据流,大致如下。我们可以看到,不同的硬件平台,其声卡设备的硬件逻辑和数据流大致一致,故抽象ASoc 很有必要。

4.3 ASoc 软件抽象

如下是笔者根据自己理解划分 Alsa 声卡驱动各个部分:

  • Machine:驱动顶层和入口,处理声卡操作。包括声卡创建,音频流的传输与控制。

  • platform:主要负责Soc 平台的DMA 和 CPU_DAI 操作。

  • Codec:主要负责Codec driver 和 Codec_dai 操作。

可以看到一个ALSA 声卡驱动是十分复杂的,包含了各种复杂驱动。

  • codec driver:音频配置和传输
  • dma:dma 处理
  • dai:i2s等接口配置
  • pcm:和上层应用交互的中间层
  • control:和上层应用交互的中间层
  • 其他:比如i2c/spi ,codec 控制操作。

4.4 ASoc 驱动分析

我们以 linux-kernel-4.4.94 为例子来分析 ASoc 驱动。限于篇幅,我们只分析 Machine 驱动框架,对于Codec 驱动和其他设备驱动,有时间再分析。

ASoc Machine 驱动调用如下:


/* ASoC platform driver */
static struct platform_driver soc_driver = {
        .driver         = {  
                .name           = "soc-audio",
                .pm             = &snd_soc_pm_ops,
        },
        .probe          = soc_probe,
.remove         = soc_remove,
};

最顶层入口是soc_probe,位于 sound/soc/soc-core.c,不同的Machine 位置可能不同。大部分在soc/xxx/下。

/* probes a new socdev */
static int soc_probe(struct platform_device *pdev)
{
        struct snd_soc_card *card = platform_get_drvdata(pdev);

        /*
        ¦* no card, so machine driver should be registering card
        ¦* we should not be here in that case so ret error
        ¦*/

        if (!card)
                return -EINVAL;

        dev_warn(&pdev->dev,
                ¦"ASoC: machine %s should use snd_soc_register_card()\n",
                ¦card->name);

        /* Bodge while we unpick instantiation */
        card->dev = &pdev->dev;

        return snd_soc_register_card(card);
}

最关键的就是 snd_soc_register_card 这个函数了。详细分析看上图uml 时许图。

4.5 ASoc 数据结构


  • ASoc 数据结构如上图。最顶层我们构建了snd_soc_card。贯穿整个驱动生命周期中,snd_soc_pcm_runtime,至关重要。
  • dai_link 关联着dai_driver 和 compoent_driver
  • snd_soc_codec:codec 相关
  • snd_soc_paltform:platform 相关
  • snd_soc_dai:cpu_dai 和 codec_dai 相关操作
  • snd_soc_component:关联dai_driver 和 component_driver。关联platform_driver 和 component_driver
  • snd_soc_ops/snd_soc_dai_ops/snd_pcm_ops:比较关键的几个ops

对于刚开始学习ASLA 驱动时,我们先关注这几个结构体就行。后续将从音频流和控制两大块,详细分析整个数据流和控制的调用过程。

5. 总结

本文详细的介绍了ALSA 驱动最关键的一环ASoC ,理解了ASoc 顶层设计框架对于我们后续深入学习ASLA 驱动至关重要。

当我们熟悉了一个平台的驱动框架后,再去看另外一个平台就知道哪些是我们需要关注的,哪些是linux 内核已经实现的,从而达到事半功倍的作用

希望本文,对读者朋友学习理解Alsa 驱动有所帮助!

有关uml 时序图和类图需要高清大图,原图文件比较大,可后台私信我【UML 高清图】单发。



漫谈嵌入式 一个爱跑马的程序员。致力于分享嵌入式物联网技术【单片机/MIPS/ARM/Linux/C/C++/Qt等】,探寻底层开发的究竟!
评论
  • 本文继续介绍Linux系统查看硬件配置及常用调试命令,方便开发者快速了解开发板硬件信息及进行相关调试。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。查看系统版本信息查看操作系统版本信息root@ido:/# cat /etc/*releaseDISTRIB_ID=UbuntuDISTRIB_RELEASE=20.04DISTRIB_CODENAME=focalDIS
    Industio_触觉智能 2025-01-03 11:37 128浏览
  • 在测试XTS时会遇到修改产品属性、SElinux权限、等一些内容,修改源码再编译很费时。今天为大家介绍一个便捷的方法,让OpenHarmony通过挂载镜像来修改镜像内容!触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,树莓派卡片电脑设计,支持开源鸿蒙OpenHarmony3.2-5.0系统,适合鸿蒙开发入门学习。挂载镜像首先,将要修改内容的镜像传入虚拟机当中,并创建一个要挂载镜像的文件夹,如下图:之后通过挂载命令将system.img镜像挂载到sys
    Industio_触觉智能 2025-01-03 11:39 108浏览
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 160浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 149浏览
  • Matter加持:新世代串流装置如何改变智能家居体验?随着现在智能家庭快速成长,串流装置(Streaming Device,以下简称Streaming Device)除了提供更卓越的影音体验,越来越多厂商开始推出支持Matter标准的串流产品,使其能作为智能家庭中枢,连结多种智能家电。消费者可以透过Matter的功能执行多样化功能,例如:开关灯、控制窗帘、对讲机开门,以及操作所有支持Matter的智能家电。此外,再搭配语音遥控器与语音助理,打造出一个更加智能、便捷的居家生活。支持Matter协议
    百佳泰测试实验室 2025-01-03 10:29 128浏览
  • 影像质量应用于多个不同领域,无论是在娱乐、医疗或工业应用中,高质量的影像都是决策的关键基础。清晰的影像不仅能提升观看体验,还能保证关键细节的准确传达,例如:在医学影像中,它对诊断结果有着直接的影响!不仅如此,影像质量还影响了:▶ 压缩技术▶ 存储需求▶ 传输效率随着技术进步,影像质量的标准不断提高,对于研究与开发领域,理解并提升影像质量已成为不可忽视的重要课题。在图像处理的过程中,硬件与软件除了各自扮演着不可或缺的基础角色,有效地协作能够确保图像处理过程既高效又具有优异的质量。软硬件各扮演了什么
    百佳泰测试实验室 2025-01-03 10:39 115浏览
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 107浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 153浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 153浏览
  • 【工程师故事】+半年的经历依然忧伤,带着焦虑和绝望  对于一个企业来说,赚钱才是第一位的,对于一个人来说,赚钱也是第一位的。因为企业要活下去,因为个人也要活下去。企业打不了倒闭。个人还是要吃饭的。企业倒闭了,打不了从头再来。个人失业了,面对的不仅是房贷车贷和教育,还有找工作的焦虑。企业说,一个公司倒闭了,说明不了什么,这是正常的一个现象。个人说,一个中年男人失业了,面对的压力太大了,焦虑会摧毁你的一切。企业说,是个公司倒闭了,也不是什么大的问题,只不过是这些公司经营有问题吧。
    curton 2025-01-02 23:08 272浏览
  • 前言近年来,随着汽车工业的快速发展,尤其是新能源汽车与智能汽车领域的崛起,汽车安全标准和认证要求日益严格,应用范围愈加广泛。ISO 26262和ISO 21448作为两个重要的汽车安全标准,它们在“系统安全”中扮演的角色各自不同,但又有一定交集。在智能网联汽车的高级辅助驾驶系统(ADAS)应用中,理解这两个标准的区别及其相互关系,对于保障车辆的安全性至关重要。ISO 26262:汽车功能安全的基石如图2.1所示,ISO 26262对“功能安全”的定义解释为:不存在由于电子/电气系统失效引起的危害
    广电计量 2025-01-02 17:18 206浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦