RT-SmartELF应用程序加载运行过程分析

原创 RTThread物联网操作系统 2022-11-01 18:43
在用户态应用程序处理的任务中,elf 加载运行是一个比较重要的步骤,下面就分析一下在 rt-smart 操作系统中,想要将一个应用程序运行起来要经过哪些步骤。
ELF 格式介绍

ELF 代表 Executable and Linkable Format。它是一种对可执行文件、目标文件和库使用的文件格式。它在 Linux 下成为标准格式已经很长时间,ELF 一个特别的优点在于,同一文件格式可以用于内核支持的几乎所有体系结构上。

RT-SMART 同样也使用 ELF 作为可执行文件的格式,下面简单介绍一下 ELF 文件格式。

ELF 文件布局和结构

下图为 ELF 文件的基本布局:

上图展示了 elf 文件的重要组成部分:

  • elf 文件头,除了用于标识ELF文件的几个字节之外,ELF头还包含了有关文件类型和大小的有关信息,

    及文件加载后程序执行的入口点信息。

  • 程序头表(program header table)向系统提供了可执行文件的数据在进程虚拟地址空间中组织

    方式的相关信息。它还表示了文件可能包含的段数目、段的位置和用途。

  • 各个段保存了与文件相关的各种形式的数据。例如,符号表、实际的二进制码、固定值(如字

    符串)或程序使用的数值常数。

  • 节头表(section header table)包含了与各段相关的附加信息。


使用 readelf 工具可以读取该类型文件中的各种数据结构。

关键数据结构

想要理解应用程序的加载运行过程,就必须要先了解 ELF 文件中的关键数据结构,知道可以通过 ELF 文件获取那些程序加载所必须的关键信息,例如文件类型、目标体系架构、版本号、程序入口点以及程序运行所需要的数据段存储在什么位置等等信息。这些信息都存放在 ELF 的相关数据结构中,那么现在就先了解一下 ELF 文件的相关数据结构吧。

下面是在 ELF 加载过程上下文数据结构,这个结构中包括了 eheader、pheader 和 sheader 三个 elf 的关键数据结构。

elf 头表

 1typedef struct
2{

3    unsigned char e_ident[EI_NIDENT]; /* 前四个字节为 0x7f E L F,其他的字节位置都有特定的语义 */
4    Elf64_Half    e_type;             /* 用于区分 ELF 的文件类型,例如可重定位、可执行、动态库、core dump 文件 */
5    Elf64_Half    e_machine;          /* 指定了文件所需的体系结构 */
6    Elf64_Word    e_version;          /* 保存了版本信息,用于区分不同的 ELF 变体,目前该规范只定义了版本 1 */
7    Elf64_Addr    e_entry;            /* 程序入口点 */
8    Elf64_Off     e_phoff;            /* 程序头表在二进制文件中的偏移量 */
9    Elf64_Off     e_shoff;            /* 节头表所在的偏移量 */
10    Elf64_Word    e_flags;            /* 特定于处理器的标志 */
11    Elf64_Half    e_ehsize;           /* 指定了ELF头的长度,单位为字节 */
12    Elf64_Half    e_phentsize;        /* 指定了程序头表中一项的长度,单位为字节(所有项的长度都相同) */
13    Elf64_Half    e_phnum;            /* 指定了程序头表中项的数目 */
14    Elf64_Half    e_shentsize;        /* 指定节头表中一项的长度,单位为字节(所有项的长度都相同) */
15    Elf64_Half    e_shnum;            /* 指定节头表中项的数目 */
16    Elf64_Half    e_shstrndx;         /* 包含各节名称的字符串表在节头表中的索引位置 */
17} Elf64_Ehdr;

程序头表

 1typedef struct
2{

3    Elf64_Word    p_type;             /* 当前项描述的段的种类,例如可装载段、动态链接、程序解释等段类型 */
4    Elf64_Word    p_flags;            /* 保存了标志信息,定义了该段的访问权限,RWX */
5    Elf64_Off     p_offset;           /* 给出了所描述段在文件中的偏移量(从二进制文件起始处开始计算,单位为字节) */
6    Elf64_Addr    p_vaddr;            /* 给出了段的数据映射到虚拟地址空间中的位置(对于可装载段类型) */
7    Elf64_Addr    p_paddr;            /* 只支持物理寻址,不支持虚拟寻址的系统,将使用 p_paddr 保存信息 */
8    Elf64_Xword   p_filesz;           /* 指定了段在二进制文件中的长度 */
9    Elf64_Xword   p_memsz;            /* 制定了段在虚拟地址空间中的长度(单位为字节),与文件中物理的长度差值可通过阶段数据或者填充 0 字节来补偿 */
10    Elf64_Xword   p_align;            /* 指定了段在内存和二进制文件中对其的方式(p_vaddr 和 p_offset 地址必须是模 p_align 的,也就是 p_align 的倍数),例如 p_align 的值为 0x1000 = 4096,这意味着段必须对其到 4KB 页 */
11} Elf64_Phdr;

节头表

 1typedef struct
2{

3    Elf64_Word    sh_name;            /* 指定了节的名称,其值不是字符串本身,而是字符串表的一个索引 */
4    Elf64_Word    sh_type;            /* 指定了节的类型,例如不可用、保存程序相关信息、符号表、包含字符串表的节、重定位信息、散列表、动态链接信息等类型 */
5    Elf64_Xword   sh_flags;           /* 节是否可写(SHF_WRITE),是否将为其分配虚拟内存(SHF_ALLOC),节是否包含可执行的机器代码(SHF_EXECINSTR) */
6    Elf64_Addr    sh_addr;            /* 指定节映射到虚拟地址空间中的位置 */
7    Elf64_Off     sh_offset;          /* 指定了节在文件中的开始位置 */
8    Elf64_Xword   sh_size;            /* 指定了节的长度,单位为字节 */
9    Elf64_Word    sh_link;            /* 引用另一个节头表项,可能根据节类型而进行不同的解释 */
10    Elf64_Word    sh_info;            /* 与上一项联用 */
11    Elf64_Xword   sh_addralign;       /* 指定了节数据在内存中对齐的方式 */
12    Elf64_Xword   sh_entsize;         /* 指定了节中各数据项的长度,前提是这些数据项的长度都相同,例如字符串表 */
13} Elf64_Shdr;

在 rt-smart 实际编码实现的过程中,为了方便数据传递,设计了一个包含上述三种数据类型的结构,利用该数据结构可以使加载过程实现更加简洁易懂,如下所示:

 1struct elf_load_context
2{

3    int fd;                     /* 应用程序文件 fd */
4    int len;                    /* 用于临时使用的 len */
5    uint8_t *load_addr;         /* 用于临时使用的加载地址 */
6    struct rt_lwp *lwp;         /* 进程句柄 */
7    struct process_aux *aux;    /* 进程辅助信息句柄*/
8    rt_mmu_info *m_info;        /* 进程 mmu 信息 */
9    Elf_Ehdr eheader;           /* elf 头表 */
10    Elf_Phdr pheader;           /* 程序头表 */
11    Elf_Shdr sheader;           /* 节头表   */
12    struct map_range user_area[2]; /* 在用户空间需要映射的地址空间,0 用于代码段,1 用于数据段 */
13};

ELF 标准节

ELF 标准定义了若干固定名称的节。这些用于执行大多数目标文件所需的标准任务。所有名称都从点开始,以便与用户定义节或非标准节相区分,最重要的标准节如下所示:

有了以上基础概念,就可以来探索真正的代码实现了。

探索程序加载代码实现

执行一个新的应用程序功能由 lwp_execve 函数来实现,该函数会初始化好一个进程所需要的运行环境,然后在该环境中启动第一个线程,也就是 main 线程。

暂且先不关注进程 PID 申请以及的 mmu 表初始化等准备工作,将注意力集中在 lwp_load 函数上。该函数将执行如下操作:

  • 打开 elf 文件,返回文件 fd

  • 调用 load_elf 函数开始执行应用程序加载

在 load_elf 函数中,将执行如下操作:

  1. 检查 elf 头,判断其魔数、架构类型、版本号等是否符合要求

  2. 判断是静态加载还是动态加载

  3. 检查程序入口地址是否为有效的用户态地址

  4. 遍历读取程序头表以及程序复制信息,将其加载到进程的用户空间里

  5. 遍历读取节头表,根据节头表中的信息,计算在用户态需要需要分配多大的地址空间用于存放 text 段以及 data 段

  6. 根据上一步骤的计算,修改进程的映射表,真正为数据段分配用户态地址空间

  7. 遍历节头表,程序运行所需要数据段加载到用户地址空间中


通过上面的操作,ELF 文件中所有关于程序启动运行所需的数据就都准备好了,接下来就可以在此基础上启动第一个线程,也就是 main 线程了。相关的代码细节在这里就不做赘述了,源代码中都添加了详尽的注释,可以自行查看。

总结

用户态进程代码量较大,同时由于复杂度过高也不容易理解,现在代码经过完善,复杂度降低以后,可读性方面有了巨大提升。想要深入了解用户态的相关实现,还需要至少了解另外三个主题:

  • 进程切换过程中底层架构级别的汇编代码

  • 进程资源管理相关内容,例如 pid、tid 的分配,用户态内存空间映射等

  • SMP 多核调度原理与实现


后续还会继续分享上述内容给大家。


版权声明:本文为RT-Thread论坛用户「我夏了夏天」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:

https://club.rt-thread.org/ask/article/8fd18929073be592.html


END




爱我就给我点在看

👇点击阅读原文进入官网

RTThread物联网操作系统 帮助您了解RT-Thread相关的资讯.
评论
  • 车身域是指负责管理和控制汽车车身相关功能的一个功能域,在汽车域控系统中起着至关重要的作用。它涵盖了车门、车窗、车灯、雨刮器等各种与车身相关的功能模块。与汽车电子电气架构升级相一致,车身域发展亦可以划分为三个阶段,功能集成愈加丰富:第一阶段为分布式架构:对应BCM车身控制模块,包含灯光、雨刮、门窗等传统车身控制功能。第二阶段为域集中架构:对应BDC/CEM域控制器,在BCM基础上集成网关、PEPS等。第三阶段为SOA理念下的中央集中架构:VIU/ZCU区域控制器,在BDC/CEM基础上集成VCU、
    北汇信息 2025-01-03 16:01 166浏览
  • 本文继续介绍Linux系统查看硬件配置及常用调试命令,方便开发者快速了解开发板硬件信息及进行相关调试。触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。查看系统版本信息查看操作系统版本信息root@ido:/# cat /etc/*releaseDISTRIB_ID=UbuntuDISTRIB_RELEASE=20.04DISTRIB_CODENAME=focalDIS
    Industio_触觉智能 2025-01-03 11:37 137浏览
  • Matter加持:新世代串流装置如何改变智能家居体验?随着现在智能家庭快速成长,串流装置(Streaming Device,以下简称Streaming Device)除了提供更卓越的影音体验,越来越多厂商开始推出支持Matter标准的串流产品,使其能作为智能家庭中枢,连结多种智能家电。消费者可以透过Matter的功能执行多样化功能,例如:开关灯、控制窗帘、对讲机开门,以及操作所有支持Matter的智能家电。此外,再搭配语音遥控器与语音助理,打造出一个更加智能、便捷的居家生活。支持Matter协议
    百佳泰测试实验室 2025-01-03 10:29 136浏览
  • 前言近年来,随着汽车工业的快速发展,尤其是新能源汽车与智能汽车领域的崛起,汽车安全标准和认证要求日益严格,应用范围愈加广泛。ISO 26262和ISO 21448作为两个重要的汽车安全标准,它们在“系统安全”中扮演的角色各自不同,但又有一定交集。在智能网联汽车的高级辅助驾驶系统(ADAS)应用中,理解这两个标准的区别及其相互关系,对于保障车辆的安全性至关重要。ISO 26262:汽车功能安全的基石如图2.1所示,ISO 26262对“功能安全”的定义解释为:不存在由于电子/电气系统失效引起的危害
    广电计量 2025-01-02 17:18 216浏览
  • 从无到有:智能手机的早期探索无线电话装置的诞生:1902 年,美国人内森・斯塔布菲尔德在肯塔基州制成了第一个无线电话装置,这是人类对 “手机” 技术最早的探索。第一部移动手机问世:1938 年,美国贝尔实验室为美国军方制成了世界上第一部 “移动” 手机。民用手机的出现:1973 年 4 月 3 日,摩托罗拉工程师马丁・库珀在纽约曼哈顿街头手持世界上第一台民用手机摩托罗拉 DynaTAC 8000X 的原型机,给竞争对手 AT&T 公司的朋友打了一个电话。这款手机重 2 磅,通话时间仅能支持半小时
    Jeffreyzhang123 2025-01-02 16:41 167浏览
  • 物联网(IoT)的快速发展彻底改变了从智能家居到工业自动化等各个行业。由于物联网系统需要高效、可靠且紧凑的组件来处理众多传感器、执行器和通信设备,国产固态继电器(SSR)已成为满足中国这些需求的关键解决方案。本文探讨了国产SSR如何满足物联网应用的需求,重点介绍了它们的优势、技术能力以及在现实场景中的应用。了解物联网中的固态继电器固态继电器是一种电子开关设备,它使用半导体而不是机械触点来控制负载。与传统的机械继电器不同,固态继电器具有以下优势:快速切换:确保精确快速的响应,这对于实时物联网系统至
    克里雅半导体科技 2025-01-03 16:11 160浏览
  • 【工程师故事】+半年的经历依然忧伤,带着焦虑和绝望  对于一个企业来说,赚钱才是第一位的,对于一个人来说,赚钱也是第一位的。因为企业要活下去,因为个人也要活下去。企业打不了倒闭。个人还是要吃饭的。企业倒闭了,打不了从头再来。个人失业了,面对的不仅是房贷车贷和教育,还有找工作的焦虑。企业说,一个公司倒闭了,说明不了什么,这是正常的一个现象。个人说,一个中年男人失业了,面对的压力太大了,焦虑会摧毁你的一切。企业说,是个公司倒闭了,也不是什么大的问题,只不过是这些公司经营有问题吧。
    curton 2025-01-02 23:08 284浏览
  • 在测试XTS时会遇到修改产品属性、SElinux权限、等一些内容,修改源码再编译很费时。今天为大家介绍一个便捷的方法,让OpenHarmony通过挂载镜像来修改镜像内容!触觉智能Purple Pi OH鸿蒙开发板演示。搭载了瑞芯微RK3566四核处理器,树莓派卡片电脑设计,支持开源鸿蒙OpenHarmony3.2-5.0系统,适合鸿蒙开发入门学习。挂载镜像首先,将要修改内容的镜像传入虚拟机当中,并创建一个要挂载镜像的文件夹,如下图:之后通过挂载命令将system.img镜像挂载到sys
    Industio_触觉智能 2025-01-03 11:39 112浏览
  • 在快速发展的能源领域,发电厂是发电的支柱,效率和安全性至关重要。在这种背景下,国产数字隔离器已成为现代化和优化发电厂运营的重要组成部分。本文探讨了这些设备在提高性能方面的重要性,同时展示了中国在生产可靠且具有成本效益的数字隔离器方面的进步。什么是数字隔离器?数字隔离器充当屏障,在电气上将系统的不同部分隔离开来,同时允许无缝数据传输。在发电厂中,它们保护敏感的控制电路免受高压尖峰的影响,确保准确的信号处理,并在恶劣条件下保持系统完整性。中国国产数字隔离器经历了重大创新,在许多方面达到甚至超过了全球
    克里雅半导体科技 2025-01-03 16:10 117浏览
  • 自动化已成为现代制造业的基石,而驱动隔离器作为关键组件,在提升效率、精度和可靠性方面起到了不可或缺的作用。随着工业技术不断革新,驱动隔离器正助力自动化生产设备适应新兴趋势,并推动行业未来的发展。本文将探讨自动化的核心趋势及驱动隔离器在其中的重要角色。自动化领域的新兴趋势智能工厂的崛起智能工厂已成为自动化生产的新标杆。通过结合物联网(IoT)、人工智能(AI)和机器学习(ML),智能工厂实现了实时监控和动态决策。驱动隔离器在其中至关重要,它确保了传感器、执行器和控制单元之间的信号完整性,同时提供高
    腾恩科技-彭工 2025-01-03 16:28 157浏览
  • 影像质量应用于多个不同领域,无论是在娱乐、医疗或工业应用中,高质量的影像都是决策的关键基础。清晰的影像不仅能提升观看体验,还能保证关键细节的准确传达,例如:在医学影像中,它对诊断结果有着直接的影响!不仅如此,影像质量还影响了:▶ 压缩技术▶ 存储需求▶ 传输效率随着技术进步,影像质量的标准不断提高,对于研究与开发领域,理解并提升影像质量已成为不可忽视的重要课题。在图像处理的过程中,硬件与软件除了各自扮演着不可或缺的基础角色,有效地协作能够确保图像处理过程既高效又具有优异的质量。软硬件各扮演了什么
    百佳泰测试实验室 2025-01-03 10:39 132浏览
  • 光耦合器,也称为光隔离器,是一种利用光在两个隔离电路之间传输电信号的组件。在医疗领域,确保患者安全和设备可靠性至关重要。在众多有助于医疗设备安全性和效率的组件中,光耦合器起着至关重要的作用。这些紧凑型设备经常被忽视,但对于隔离高压和防止敏感医疗设备中的电气危害却是必不可少的。本文深入探讨了光耦合器的功能、其在医疗应用中的重要性以及其实际使用示例。什么是光耦合器?它通常由以下部分组成:LED(发光二极管):将电信号转换为光。光电探测器(例如光电晶体管):检测光并将其转换回电信号。这种布置确保输入和
    腾恩科技-彭工 2025-01-03 16:27 155浏览
  • 国际标准IPC 标准:IPC-A-600:规定了印刷电路板制造过程中的质量要求和验收标准,涵盖材料、外观、尺寸、焊接、表面处理等方面。IPC-2221/2222:IPC-2221 提供了用于设计印刷电路板的一般原则和要求,IPC-2222 则针对高可靠性电子产品的设计提供了进一步的指导。IPC-6012:详细定义了刚性基板和柔性基板的要求,包括材料、工艺、尺寸、层次结构、特征等。IPC-4101:定义了印刷电路板的基板材料的物理和电气特性。IPC-7351:提供了元件封装的设计规范,包括封装尺寸
    Jeffreyzhang123 2025-01-02 16:50 198浏览
  • 在科技飞速发展的今天,机器人已经逐渐深入到我们生活和工作的各个领域。从工业生产线上不知疲倦的机械臂,到探索未知环境的智能探测机器人,再到贴心陪伴的家用服务机器人,它们的身影无处不在。而在这些机器人的背后,C 语言作为一种强大且高效的编程语言,发挥着至关重要的作用。C 语言为何适合机器人编程C 语言诞生于 20 世纪 70 年代,凭借其简洁高效、可移植性强以及对硬件的直接操控能力,成为机器人编程领域的宠儿。机器人的运行环境往往对资源有着严格的限制,需要程序占用较少的内存和运行空间。C 语言具有出色
    Jeffreyzhang123 2025-01-02 16:26 153浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦