大浪淘沙:一文看懂内存芯片的发展史

云脑智库 2022-11-01 00:00

1958年9月12日,来自德州仪器公司的杰克·基尔比(Jack Kilby),成功地将包括锗晶体管在内的五个元器件集成在一起,制作了世界上第一块锗集成电路


次年7月,美国仙童半导体公司的罗伯特·诺伊斯(Robert Norton Noyce),基于硅平面工艺,成功发明了世界上第一块硅集成电路


杰克·基尔比(左),罗伯特·诺伊斯(右)


正如大家现在所知,这两位大佬的发明,拥有极为重要的意义。集成电路的出现,有力推动了电子器件的微型化,也为芯片时代的全面到来奠定了基础。


DRAM的诞生


进入1960年代后,随着计算机技术的发展,电子行业开始了将集成电路技术用于计算机存储领域的尝试。


当时,半导体存储技术被分为ROM和RAM两个方向。ROM是只读存储器,存储数据不会因为断电而丢失,也称外存。而RAM是随机存取存储器,用于存储运算数据,断电后,数据会丢失,也称内存


今天,我们重点说说RAM这个领域。

1966年,来自IBM Thomas J. Watson研究中心的罗伯特·丹纳德(Robert H. Dennard),率先发明了DRAM存储器(动态随机存取存储器)。


罗伯特·丹纳德


这种存储器基于“MOS型晶体管+电容结构”,具有能耗低、读写速度快且集成度高的特点。直到现在,我们的计算机内存、手机内存、显卡内存等,都是基于DRAM技术。


1968年6月,IBM注册了晶体管DRAM的专利。但是,正当他们准备进行DRAM产业化的时候,美国司法部启动了对他们的反垄断调查。


这些调查拖延了IBM的DRAM产业化进度,从而给其它公司带来了机会。


不久后,1969年,美国加州的Advanced Memory System(先进内存系统)公司捷足先登,成功生产出了世界上第一款DRAM芯片(容量仅有1KB),并将其销售给计算机厂商霍尼韦尔公司(Honeywell)。


霍尼韦尔公司收到这批DRAM芯片后,发现工艺上存在一些问题。于是,他们找到了一家新成立的公司,请求帮助。


这家公司,就是1968年罗伯特·诺伊斯(前文提到的硅集成电路发明人)和戈登·摩尔(摩尔定律的提出者)等人共同创办的英特尔Intel


罗伯特·诺伊斯(左)和戈登·摩尔(右)


英特尔公司成立后,主要业务就是研制晶体管半导体存储器芯片。


当时,半导体工艺主要有两个研究方向,分别是双极型晶体管场效应(MOS)晶体管。英特尔自己也不知道哪个方向正确,于是,成立了两个研究小组,分别跟进两个技术方向。


1969年4月,双极型小组率先有了突破,推出了64bit容量的静态随机存储器(SRAM)芯片——C3101。这个芯片是英特尔的第一款产品,主要客户就是霍尼韦尔。


Intel C3101


场效应管小组也不甘落后,1969年7月,他们推出了256bit容量的静态随机存储器芯片——C1101。这是世界第一个大容量SRAM存储器。


1970年10月,场效应管小组再接再励,成功推出了自己的第一款DRAM芯片(也被认为是世界上第一款成熟商用的DRAM芯片)——C1103


Intel C1103,有18个针脚,容量1Kbit,售价10美元。


C1103推出后,获得极大成功,很快成为全球最畅销的半导体内存,服务于HP、DEC等重要客户。


在C1103的帮助下,英特尔也迅速发展壮大。1972年,英特尔的员工人数超过1000人,年收入超过2300万美元。1974年,英特尔DRAM产品的全球市场份额达到惊人的82.9%。


英特尔的早期团队


就在英特尔在DRAM领域赚得盆满钵满的同时,它的竞争对手也在迅速崛起。


1973年,美国德州仪器(TI)、莫斯泰克(Mostek)等厂商先后进入DRAM市场。


德州仪器在英特尔推出C1103之后,就进行了拆解仿制,通过逆向工程,研究DRAM的架构和工艺。后来,1971年和1973年,他们先后推出了2K和4K DRAM,成为英特尔的强劲对手。



德州仪器,英特尔的老对手


莫斯泰克公司由德州仪器半导体中心的前首席工程师L.J.Sevin创立(1969年),技术实力同样不俗。


1973年,他们推出了16针脚的DRAM产品——MK4096,也对英特尔的市场地位形成了挑战(其它公司都是22针脚,针脚越少,制造成本越低)。


1976年,莫斯泰克公司又推出了MK4116,采用了POLY-II(双层多晶硅栅)工艺,容量达到16K。这款产品获得了巨大成功,一举逆转了市场竞争格局,将自己的DRAM市占率提升到了75%。


MK4116


可惜,没过多久,因为遭遇来自资本市场的恶意收购,莫斯泰克公司的股权结构大幅变动,管理层剧烈动荡,技术人员迅速流失,公司很快走入低谷。


1979年,该公司被美国联合技术公司(UTC)收购。后来,又转卖给了意法半导体。


1978年10月,四个莫斯泰克公司的技术人员离职,在爱达荷州一家牙科诊所的地下室,共同创立了一家新的存储技术公司。


这家公司,也就是后来的存储业巨头——镁光(Micron)


镁光的创始人团队


日本半导体的成与败


除了国内竞争对手之外,英特尔面临的更大威胁来自国外。更具体来说,是来自——日本


1970年代,日本经济高速崛起。为了在全球科技产业链占据有利位置,他们在半导体技领域进行了精心布局。


1976年,日本通过举国体制,成立了VLSI联合研发体(VLSI:THE VERY LARGE SCALE INTEGRATED,超大规模集成)。


联合研发体一共设有6个实验室,专门进行高精度加工技术、硅结晶技术、工艺处理技术、监测评价技术、装置设计技术等领域的研究。


不久后,这个联合研发体就成功攻克了电子束光刻机、干式蚀刻装置等半导体核心加工设备,以及领先的制程工艺和半导体设计能力,为日本半导体行业的腾飞奠定了基础。


1977年,在VLSI项目的帮助下,日本成功研制出了64K DRAM,追平了美国公司的研发进度。


到了1980年代,日本厂商(富士通、日立、三菱、 NEC、东芝等)继续发力,凭借质量和价格优势,开始反超美国公司。


1986年,日本存储器产品的全球市场占有率上升至65%,而美国则降低至30%。


在惨烈的市场竞争下,美国英特尔公司直接宣布放弃了DRAM市场(1985年)。而唯一能够在日系厂商夹缝中生存的,只剩下摩托罗拉(Motorola)。


全球半导体企业排名(1987年)


螳螂捕蝉,黄雀在后。就在日本半导体厂商眼看就要一统江湖的时候,外部政治环境开始发生了微妙的变化。


1985年,美苏冷战气氛不断减弱,日美贸易摩擦不断增加。在巨大的财政赤字压力下,美国里根政府开始将注意力转移到打压日本经济上。


这一年,美国主导了著名的《广场协议》,逼迫日元升值。与此同时,美国半导体协会也发起了对日本半导体等产品的反倾销诉讼。后来,两国达成了对日本半导体产品的价格监督协议。


在接二连三的打击下,日本半导体产品的市场份额一落千丈,很快丧失了主导权。


韩系半导体的崛起


那么,日本厂商让出来的市场份额,是不是被美国厂商拿走了呢?


并没有。


正所谓“螳螂捕蝉,黄雀在后”,日本厂商快速失势的同时,美国的另一个竞争对手又杀了出来,那就是——韩国


早在日本启动VLSI项目的时候,韩国政府也没闲着。他们在庆尚北道的龟尾产业区建立了韩国电子技术研究所(KIET),高薪笼络美国的半导体人才,集中研发集成电路关键技术。



除了KIET之外,韩国三星、LG、现代和大宇等财阀,也看中了半导体技术的市场前景,通过购买、引进技术专利及加工设备,对其进行消化吸收,积蓄技术力量。


1984年,三星半导体建成了自己的第一个存储器工厂,批量生产64K DRAM。谁也没有想到,这个名不见经传的韩国企业,会变成日后的行业“巨无霸


话说,从1980年代至今,DRAM产业经历了将近四十年的发展。如果用一个词来形容这四十年,那就是——“腥风血雨”


原因很简单,DRAM半导体产业,最大的特点就是其周期性规律。行业人士曾经总结:DRAM半导体存储,每赚钱一年,就要亏钱两年,所谓“赚一亏二”


在这种强烈的周期性规律下,想要长期生存下去,是一件非常困难的事情。DRAM厂商需要有强大的现金流和融资能力,能够维持高强度的研发支出,保持团队的稳定。


在亏损周期,DRAM厂商需要更多的钱,才能够活下去。在繁荣周期,也不能大意。厂商在选择扩充产能时机时,需要非常谨慎。不然,就可能导致供大于求,盈利变亏损。


四十年前,全球大概有40-50家DRAM厂商。如今,只剩下三家,竞争之残酷,由此可见一斑。


这四十年里,有一家企业不仅坚持活了下来,还干掉无数对手,长期占据霸主地位。这家企业,就是前面提到的三星(Samsung)


三星电子


三星的故事,有些同学可能听说过。他们采取了一个被无数商学院写入教材的“杀手锏”战略——反周期投入


简单来说,反周期投入,就是利用行业周期性发展的特点,在行业进入低谷时,在竞争对手都收缩规模时,反其道而行之,加大投入,扩大产能,进一步打压价格,从而让对手加剧亏损,甚至倒闭。


换言之,就是大家玉石俱焚,但是我更有钱,把你焚死了,我再继续活。


三星这家公司,就是靠着韩国的举国之力,接二连三地采用“反周期投入”策略,干掉了无数对手,成为了半导体存储领域的老大。


接下来,我们就详细看看,这几十年到底发生了什么。


  • 第一次“反周期投入”


三星的第一次“反周期投入”,就发生在前文所说的1980年代中期。


当时,日美激战正酣,DRAM市场普遍不景气,价格大跌。DRAM芯片的价格从每片4美元(1984年),跌到了每片0.3美元(1985年)。


三星建厂推出64K DRAM时,生产成本是1.3美元/片。面对行业寒冬,三星不仅没有收缩投资,反而开始逆向投资,扩大产能。

到1986年底,三星半导体累积亏损3亿美元,股权资本完全亏空,接近破产。

关键时期,韩国政府出手“救市”,总共投入近3.5亿美金,并且以政府名义背书,给三星拉来了20亿美元的个体募资。

后来,日本半导体被美国干翻,加上PC电脑进入热销期带来的行业繁荣,使得三星顺利翻盘,迎来业绩增长。

不久后,以三星为代表的韩系DRAM厂商,逐渐蚕食了日本半导体企业让出的市场份额,占据了市场的主导地位。


  • 第二次“反周期投入”


1992年,日本住友树脂厂发生爆炸,导致原材料供应紧张,内存价格暴涨这一年,三星率先推出世界上第一个64M DRAM。


1993年,全球半导体市场又开始转弱。这时,三星故技重施,采取了第二次“反周期投入”。他们投资兴建8英寸硅片生产线,用于生产DRAM。


1995年,微软公司Windows95视窗操作系统发布,极大地刺激了内存的需求,带动内存价格大幅上扬,三星的投资获得回报。全球各大厂商后知后觉,纷纷投资扩大产能。


好景不长,到了1995年的年底,各厂商8英寸晶圆厂投产后,导致产能急剧增加,反而使得DRAM变成供大于求。于是,卖方市场又变成了买方市场,价格又开始下跌。


在此情况下,厂商们被迫削减产量,减小投资规模。


三星继续扩大投资。1996年,三星推出世界上第一个1GB DRAM,奠定了自己的行业领军地位。


1996-1998年,DRAM持续处于下行周期。


1999年,DRAM价格下跌的趋势有所缓解。因为互联网泡沫的出现,DRAM行业进入了短暂的繁荣阶段。


这一年,在激烈的竞争环境下,内存行业发生了若干个重大变化


韩系方面,韩国现代内存与LG半导体合并,成立现代半导体,后来,又从现代集团拆分(2001年),改名海力士(Hynix)


美系方面,镁光收购德州仪器内存部门。


日系方面,日立、NEC、三菱电机的DRAM业务整合,抱团成立了尔必达(ELPIDA)


欧系方面,西门子集团的半导体部门独立,成立了亿恒科技。几年后,2002年,改名为英飞凌(Infineon)。再后来,2006年,英飞凌科技存储器事业部拆分独立,变成了奇梦达(Qimonda)


2000年,全球DRAM市场份额的前五名之中,有两家是韩系厂商,分别是排名第一的三星(23.00%),还有排名第三的现代(19.36%)。


不久后,互联网泡沫破碎,全球经济危机爆发。PC市场遭受重创,DRAM的市场需求也急速下降,价格又迎来了跳水。


2001年,DRAM市场规模从288亿美元腰斩至110亿美元。


2002-2006年,DRAM市场逐渐从低谷中恢复,整体增长形势良好。


2006年,三星开发出世界上第一个50nm工艺的1GB DRAM。海力士则开发出当时世界上最高速的200MHz 512MB Mobile DRAM。


那一时期,DRAM市场逐渐形成了五强格局,分别是:三星(韩)、SK海力士(韩)、奇梦达(德)、镁光(美)和尔必达(日)。


  • 第三次“反周期投入”


2007年,微软推出Vista系统。该系统对内存消耗较大,DRAM厂商预期内存需求大增,于是纷纷增加产能。


但实际上,Vista销量很差,没有带动内存市场,导致产能再次过剩。


更悲催的是,2008年,金融危机爆发,导致DRAM市场雪上加霜。内存价格一路下跌,甚至跌破材料成本。


在这个关键时期, 三星第三次祭出“反周期投入”的杀招,进一步扩大产能,加剧了行业亏损。


2009年春天,排名第三的德系厂商奇梦达宣布破产倒闭,欧洲厂商正式退出了DRAM市场。


奇梦达


2011年,DRAM供应量再次超过实际需求,价格暴跌。这一次,尔必达没能熬过去,宣布破产,标志着日本厂商全面退出了DRAM产业。


尔必达芯片


于是,五强变三强,DRAM领域只剩下三星(韩)、镁光(美)、海力士(韩)。三家公司的市占率加起来,超过了93%。


█ DRAM技术的现状


2011年之后,DRAM内存的市场格局没有发生什么重大变化。但是,DRAM的用户需求和市场环境,变化很大。


除传统PC之外,随着移动互联网和物联网的高速发展,智能手机、可穿戴设备、物联网设备(摄像头等)迅速崛起,极大地带动了对DRAM的需求。


云计算、大数据和AI人工智能的发展,又推动了数据中心的数量增加,从而带来了服务器和网络设备的急剧增加,也刺激了DRAM的销量增长。


这些需求,逐渐使得DRAM细分为标准型DRAM、移动型DRAM、绘图型DRAM、利基型DRAM等类别。


标准DRAM主要应用于PC、服务器等。移动型DRAM主要为LPDDR,应用于智能手机、平板电脑等场景。绘图型DDR用于显卡的显存(GDDR)。利基型DRAM,主要应用于液晶电视、数字机顶盒、网络播放器等产品。


LPDDR


多产品场景的旺盛需求,推动了DRAM价格的上扬。2018年左右,比特币等数字货币的需求爆发,更是让DRAM市场迎来了难得的“黄金时期”。


2019年之后,由于前期产能扩张和去库存因素,内存价格下跌较多。加密货币市场价格崩塌、智能手机市场进入成熟期,使得市场需求疲软,DRAM再次进入低谷期。


根据相关机构发布的数据,从2020年下半年开始,到2022年5月,都属于DRAM市场的好转期。


今年6月开始,DRAM行情暴跌。6月份销量下降了36%,7月份又下降了21%,可以说是全面崩盘,惨不忍睹。根据机构预测,四季度跌幅将进一步扩大。


DRAM行情暴跌


接下来,我们再从技术的角度,看看这些年DRAM的发展。


一直以来,DRAM芯片都是以微缩制程的方式,来提高存储密度。


DRAM每一次制程的更新换代,都需要大量的投入。


以30nm更新到20nm为例,后者需要的光刻掩模版数目增加了30%,非光刻工艺步骤数翻倍。对洁净室厂房面积的要求,也随着设备数的上升而增加了80%以上。


以前,这些成本都可以通过单晶圆更多的芯片产出,以及性能带来的溢价,进行弥补。但是,随着工艺制程的不断微缩,增加的成本和收入之间的差距逐渐缩小。


2013年左右,当制程工艺进入20nm之后,制造难度大幅提升。18/16nm之后,继续在二维方向缩减尺寸,已不再具备成本和性能方面的优势。


于是,DRAM芯片厂商开始另辟蹊径,开始研究Z方向的扩展能力。也就是说,开始推进3D封装。


作为行业龙头,三星率先从封装角度实现了3D DRAM。他们采用TSV封装技术,将多个DRAM芯片堆叠起来,从而大幅提升单根内存条容量和性能。后来,各个厂商纷纷跟进,3D DRAM成为主流。


在产品标准方面,行业一般采用由固态技术协会(JEDEC)制定的产品标准,也就是大家熟悉的DDR1-DDR5。


图片来源:全球半导体观察


DRAM三巨头,都具备了DDR5/LPDDR5的量产能力。三星正在捣鼓DDR6,据说2024年完成设计。


在芯片工艺制程上,DRAM目前的表述和以前有所不同。以前,都是直接40nm、20nm这么叫。现在,因为电路结构是三维的,所以线性的衡量方式不再适用,出现了1X、1Y、1Z、1α、1β、1γ之类的术语表达制程。


业界认为,10nm~20nm系列制程至少包括六代,1X大约等同于19nm,1Y约等同于18nm,1Z大约为16-17nm,1α、1β、1γ则对应12—14nm(15nm以下)。

图片来源:全球半导体观察

三星、SK海力士和镁光已在2016~2017年期间进入1Xnm阶段,2018~2019年进入1Ynm阶段,2020年后进入1Znm阶段。

目前,各大厂家继续向10nm逼近。最新的1αnm,仍处于10+nm阶段。



█ 中国DRAM产业的过去和现在


最后,我们再来看看国内的DRAM产业发展情况。


中国是全球半导体存储器的重要市场之一,也是全球半导体存储厂商的“必争之地”。


但是,实事求是来说,我们自己的DRAM产业发展,远远落后于竞争对手


国内DRAM产业的起步,可以追溯到1990年代。


当时,日本NEC在中国大陆成立了两家合资公司,从事DRAM的生产。


第一家,是1991年NEC和首钢合资成立的首钢NEC


首钢NEC从1995年开始,采用6英寸1.2微米工艺,生产4M DRAM(后来升级到16M)。后来,1997年DRAM全球大跌价,首钢NEC遭受重创,从此一蹶不振。后来,首钢NEC沦为NEC在海外的一个代工基地,退出了DRAM产业。


第二家,是1997年NEC和华虹集团合资成立的华虹NEC


华虹NEC从1999年9月开始,采用8英寸0.35微米工艺技术,生产当时主流的64M DRAM内存芯片。2001年后,随着NEC退出DRAM市场,华虹也退出了DRAM产业。


2004年,中国又开始了DRAM产业的第二次尝试。这次有所行动的,是中芯国际


当时,中芯国际在北京投资建设了中国大陆第一座12英寸晶圆厂(Fab4),2006年大规模量产80nm工艺,为奇梦达、尔必达代工生产DRAM。


好景不长,2008年,由于中芯国际业务调整,退出了DRAM业务。第二次尝试,宣告失败。


2015年,中国DRAM采购金额约为120亿美元,占全球DRAM供货量的21.6%。严重依赖进口的现状,促使国内开始了针对DRAM业务的第三次尝试。


这次尝试,最具代表性的,就是武汉、合肥和厦门三大存储器基地。这些基地借助国家和地方层面的产业政策,投入了大量资本(超过2500亿人民币),发展半导体存储技术,培养人才。


目前,国内在DRAM领域比较有代表性的企业是合肥长鑫、福建晋华、紫光国芯、兆易创新、北京矽成、芯半导体、南亚科技(中国台湾)、华邦电子(中国台湾)、力积电中国台湾等。


合肥长鑫,是国内DRAM存储芯片的龙头企业。他们的DRAM技术主要来自于已破产的德系DRAM厂商奇梦达,以及日系厂商尔必达。


2019年9月20日,合肥长鑫宣布中国大陆第一座12英寸DRAM工厂投产,并发布了首个19nm工艺制造的8G DDR4,属于历史性突破。


根据机构预计,合肥长鑫的产能2022年到2023年将有望达到12.5万片。


福建晋华,大家应该会有所耳闻。前几年,他们被美国政府制裁,新闻闹得很大。


2016年5月,福建晋华与联电合作,进行利基型DRAM的生产。2017年12月,镁光指控福建晋华和联电盗用了自己的内存芯片技术。2018年1月,福建晋华也就专利侵犯向镁光提起诉讼。2018年10月,福建晋华被列入出口管制实体清单。2018年11月,美国司法部又以窃取镁光业机密为由起诉联电和福建晋华。


一番折腾之后,联电扛不住了。2019年1月底,联电宣布撤出福建晋华DRAM项目。2021年11月,联电和镁光达成和解。目前,福建晋华方面审查还没有完整的最终结果。



█ 结语


好了,洋洋洒洒写了那么多,看到这里的都是真爱。


总之,DRAM存储器是计算机、手机等产品的重要组成部分,也是数字基础设施不可或缺的“零件”。


目前,国内DRAM存储器已经基本解决了有无的问题。下一步,要解决就是良品率提升的问题,以及产能爬坡问题。在融资能力、产业链配套及人才梯队等方面,我们还需要不断加强,谨慎前行。


期待我们能够早日打破“三强”格局,在DRAM领域占据更重要的地位。



谢谢大家的耐心观看!下期,小枣君和大家聊聊FLASH存储的发展史,敬请期待!



参考资料:

1、《这场DRAM技术困局谁来破?》,王凯琪,全球半导体观察;

2、《DRAM江湖之美国演义》,芯光社;

3、《存储技术发展历程》,谢长生;

4、《DRAM芯片国产化替代进程曲折、前途光明》,湘财证券,王攀、王文瑞;

5、《存储大厂又一次豪赌》,半导体行业观察;

6、《存储芯片行业研究报告》,国信证券;

7、《国产存储等待一场革命》,付斌,果壳;

8、《关于半导体存储,没有比这篇更全的了》,芯师爷;

9、《科技简章035-半导体存储之闪存》,悟弥津,知乎;
10、百度百科、维基百科相关词条。

云脑智库 努力是一种生活态度,与年龄无关!专注搬运、分享、发表雷达、卫通、通信、化合物半导体等技术应用、行业调研、前沿技术探索!专注相控阵、太赫兹、微波光子、光学等前沿技术学习、分享
评论
  • 说到福特,就要从亨利·福特(Henry Ford)这个人物说起。在发明大王爱迪生的电气工厂担任工程师的福特下班后,总是在自家仓库里努力研究和开发汽车。1896年,福特终于成功制造出一辆三轮车,开启了福特汽车的传奇。最初几年,福特都是独自制造汽车并同时进行销售。 (今天很多人都知道的精益管理中的5S方法,或多或少地受到了福特 CANDO方法的影响。)1903年,福特从牧师、律师、银行家、会计师等十一位股东那里筹集了十万美元,并在自家庭院成立了美国第五百零三家汽车公司——福特汽车公司(Fo
    优思学院 2025-01-10 11:21 29浏览
  • 新年伊始,又到了对去年做总结,对今年做展望的时刻 不知道你在2024年初立的Flag都实现了吗? 2025年对自己又有什么新的期待呢? 2024年注定是不平凡的一年, 一年里我测评了50余块开发板, 写出了很多科普文章, 从一个小小的工作室成长为科工公司。 展望2025年, 中国香河英茂科工, 会继续深耕于,具身机器人、飞行器、物联网等方面的研发, 我觉得,要向未来学习未来, 未来是什么? 是掌握在孩子们生活中的发现,和精历, 把最好的技术带给孩子,
    丙丁先生 2025-01-11 11:35 77浏览
  • 01. 什么是过程能力分析?过程能力研究利用生产过程中初始一批产品的数据,预测制造过程是否能够稳定地生产符合规格的产品。可以把它想象成一种预测。通过历史数据的分析,推断未来是否可以依赖该工艺持续生产高质量产品。客户可能会要求将过程能力研究作为生产件批准程序 (PPAP) 的一部分。这是为了确保制造过程能够持续稳定地生产合格的产品。02. 基本概念在定义制造过程时,目标是确保生产的零件符合上下规格限 (USL 和 LSL)。过程能力衡量制造过程能多大程度上稳定地生产符合规格的产品。核心概念很简单:
    优思学院 2025-01-12 15:43 92浏览
  • ARMv8-A是ARM公司为满足新需求而重新设计的一个架构,是近20年来ARM架构变动最大的一次。以下是对ARMv8-A的详细介绍: 1. 背景介绍    ARM公司最初并未涉足PC市场,其产品主要针对功耗敏感的移动设备。     随着技术的发展和市场需求的变化,ARM开始扩展到企业设备、服务器等领域,这要求其架构能够支持更大的内存和更复杂的计算任务。 2. 架构特点    ARMv8-A引入了Execution State(执行状
    丙丁先生 2025-01-12 10:30 73浏览
  • LVGL(Light and Versatile Graphics Library)是一个免费的开源图形库,旨在为各种微控制器(MCU)和微处理器(MPU)创建美观的用户界面(UI)。LVGL可以在占用很少资源的前提下,实现丝滑的动画效果和平滑滚动的高级图形,具有轻量化、跨平台可用性、易于移植、操作友好以及免费使用等诸多优势。近期,飞凌嵌入式为OK3506J-S开发板移植了最新9.2版本的LVGL,支持多种屏幕构件以及鼠标、键盘、触摸等多种输入方式, 能够带来更加友好的操作界面;同时,启动速度也
    飞凌嵌入式 2025-01-10 10:57 24浏览
  • 飞凌嵌入式FETMX8MM-C核心板现已支持Linux6.1系统,此次升级不仅使系统功能更加丰富,还通过全新BSP实现了内存性能的显著提升。基于NXP i.MX8M Mini处理器设计开发的飞凌嵌入式FETMX8MM-C核心板,拥有4个Cortex-A53高性能核和1个Cortex-M4实时核,拥有高性能、高算力和流畅的系统运行速度。Linux6.1系统则为其带来了更多新特性,包括硬件加速功能的增强、电源管理的优化以及系统安全性和稳定性的提升等等,这些改进使得FETMX8MM-C核心板在数据处理
    飞凌嵌入式 2025-01-10 09:59 23浏览
  • 在不断发展的电子元件领域,继电器——作为切换电路的关键设备,正在经历前所未有的技术变革。固态继电器(SSR)和机械继电器之间的争论由来已久。然而,从未来发展的角度来看,固态继电器正逐渐占据上风。本文将从耐用性、速度和能效三个方面,全面剖析固态继电器为何更具优势,并探讨其在行业中的应用与发展趋势。1. 耐用性:经久耐用的设计机械继电器:机械继电器依靠物理触点完成电路切换。然而,随着时间的推移,这些触点因电弧、氧化和材料老化而逐渐磨损,导致其使用寿命有限。因此,它们更适合低频或对切换耐久性要求不高的
    腾恩科技-彭工 2025-01-10 16:15 60浏览
  • 根据Global Info Research(环洋市场咨询)项目团队最新调研,预计2030年全球无人机电池和电源产值达到2834百万美元,2024-2030年期间年复合增长率CAGR为10.1%。 无人机电池是为无人机提供动力并使其飞行的关键。无人机使用的电池类型因无人机的大小和型号而异。一些常见的无人机电池类型包括锂聚合物(LiPo)电池、锂离子电池和镍氢(NiMH)电池。锂聚合物电池是最常用的无人机电池类型,因为其能量密度高、设计轻巧。这些电池以输出功率大、飞行时间长而著称。不过,它们需要
    GIRtina 2025-01-13 10:49 63浏览
  • 流量传感器是实现对燃气、废气、生活用水、污水、冷却液、石油等各种流体流量精准计量的关键手段。但随着工业自动化、数字化、智能化与低碳化进程的不断加速,采用传统机械式检测方式的流量传感器已不能满足当代流体计量行业对于测量精度、测量范围、使用寿命与维护成本等方面的精细需求。流量传感器的应用场景(部分)超声波流量传感器,是一种利用超声波技术测量流体流量的新型传感器,其主要通过发射超声波信号并接收反射回来的信号,根据超声波在流体中传播的时间、幅度或相位变化等参数,间接计算流体的流量,具有非侵入式测量、高精
    华普微HOPERF 2025-01-13 14:18 34浏览
  • 随着通信技术的迅速发展,现代通信设备需要更高效、可靠且紧凑的解决方案来应对日益复杂的系统。中国自主研发和制造的国产接口芯片,正逐渐成为通信设备(从5G基站到工业通信模块)中的重要基石。这些芯片凭借卓越性能、成本效益及灵活性,满足了现代通信基础设施的多样化需求。 1. 接口芯片在通信设备中的关键作用接口芯片作为数据交互的桥梁,是通信设备中不可或缺的核心组件。它们在设备内的各种子系统之间实现无缝数据传输,支持高速数据交换、协议转换和信号调节等功能。无论是5G基站中的数据处理,还是物联网网关
    克里雅半导体科技 2025-01-10 16:20 70浏览
  • 电动汽车(EV)正在改变交通运输,为传统内燃机提供更清洁、更高效的替代方案。这种转变的核心是电力电子和能源管理方面的创新,而光耦合器在其中发挥着关键作用。这些不起眼的组件可实现可靠的通信、增强安全性并优化电动汽车系统的性能,使其成为正在进行的革命中不可或缺的一部分。光耦合器,也称为光隔离器,是一种使用光传输电信号的设备。通过隔离高压和低压电路,光耦合器可确保安全性、减少干扰并保持信号完整性。这些特性对于电动汽车至关重要,因为精确控制和安全性至关重要。 光耦合器在电动汽车中的作用1.电池
    腾恩科技-彭工 2025-01-10 16:14 57浏览
  • 随着全球向绿色能源转型的加速,对高效、可靠和环保元件的需求从未如此强烈。在这种背景下,国产固态继电器(SSR)在实现太阳能逆变器、风力涡轮机和储能系统等关键技术方面发挥着关键作用。本文探讨了绿色能源系统背景下中国固态继电器行业的前景,并强调了2025年的前景。 1.对绿色能源解决方案日益增长的需求绿色能源系统依靠先进的电源管理技术来最大限度地提高效率并最大限度地减少损失。固态继电器以其耐用性、快速开关速度和抗机械磨损而闻名,正日益成为传统机电继电器的首选。可再生能源(尤其是太阳能和风能
    克里雅半导体科技 2025-01-10 16:18 51浏览
  • 随着数字化的不断推进,LED显示屏行业对4K、8K等超高清画质的需求日益提升。与此同时,Mini及Micro LED技术的日益成熟,推动了间距小于1.2 Pitch的Mini、Micro LED显示屏的快速发展。这类显示屏不仅画质卓越,而且尺寸适中,通常在110至1000英寸之间,非常适合应用于电影院、监控中心、大型会议、以及电影拍摄等多种室内场景。鉴于室内LED显示屏与用户距离较近,因此对于噪音控制、体积小型化、冗余备份能力及电气安全性的要求尤为严格。为满足这一市场需求,开关电源技术推出了专为
    晶台光耦 2025-01-13 10:42 69浏览
  • 随着国家对环保要求日趋严格。以铅酸电池为动力的电动自行车、电动摩托车,将逐渐受到环保管制。而能量密度更高的磷酸铁锂等锂电池成为优先的选择,锂电池以其高能量密度、快速充电、轻量化等特点,已经大量应用于电动车领域。  光耦在锂电池系统PMU中的应用,能提供完善的安全保护和系统支撑。BMS和电池被封装成安装所需要的尺寸外形,高速的CAN以及RS-485等通信总线,被应用在与控制器、中控之间通信。晶台光耦,被广泛应用于通信隔离、双MCU系统应用地隔离、电机驱动隔离等。下图例举在电动摩
    晶台光耦 2025-01-10 10:44 57浏览
  • Snyk 是一家为开发人员提供安全平台的公司,致力于协助他们构建安全的应用程序,并为安全团队提供应对数字世界挑战的工具。以下为 Snyk 如何通过 CircleCI 实现其“交付”使命的案例分析。一、Snyk 的挑战随着客户对安全工具需求的不断增长,Snyk 的开发团队面临多重挑战:加速交付的需求:Snyk 的核心目标是为开发者提供更快、更可靠的安全解决方案,但他们的现有 CI/CD 工具(TravisCI)运行缓慢,无法满足快速开发和部署的要求。扩展能力不足:随着团队规模和代码库的不断扩大,S
    艾体宝IT 2025-01-10 15:52 154浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦