10通用同步异步收发器(USART)

一口Linux 2022-10-28 11:50

10.1 通信基本概念

10.1.1 并行通信和串行通信

1、处理器与外部设备通信的两种方式:

串行通信有两种通信方式:

并行通信:
-传输原理:数据各个位同时传输。
-优点:速度快
-缺点:占用引脚资源多

串行通信 -传输原理:
串行通信方式有 UART USB IIC SPI CAN 以太网等都是采用串行通信方式。
数据按位顺序传输。
-优点:占用引脚资源少
-缺点:速度相对较慢

不过这两种通信方式是可以转换的,如图串行转并行:

有关两者优缺点:

10.1.2 单工通信、半双工通信、全双工通信

按照数据传送方向,分为:
单工:
数据传输只支持数据在一个方向上传输;
半双工:
允许数据在两个方向上传输,但是,在某一时刻,只允许数据在一个方向上传输,它实际上是一种切换方向的单工通信;
全双工:
允许数据同时在两个方向上传输,因此,全双工通信是两个单工通信方式的结合,它要求发送设备和接收设备都有独立的接收和发送能力。


11.1.3 同步通信和异步通信


1、同步通信:带时钟同步信号传输。


2、 异步通信:不带时钟同步信号。


10.1.4 RS-232

1、RS232标准串口通讯结构图


2、原生的串口通信


10.1.5 串口数据帧格式

1、串口数据包的基本组成


2、奇偶校验


10.2 STM32F429 USART结构

10.2.1 概述


10.2.2 USART结构


2、数据通道


3、发送器


4、接收器



10.2.3 波特率设置


10.2.4 DMA控制

接收缓冲区和发送缓冲区的DMA请求是独立的,它们分别对应于独立的DMA通道。

1.使用DMA进行发送

将USART控制寄存器3(USART_CR3)中的DMAT位置1可以使能DMA模式进行发送。
一旦使能了USART的DMA功能,当TXE 位置1时,
控制器会将数据自动从SRAM区加载到USART_DR,启动发送过程。
所有数据的发送不需要通过程序干涉。

2.使用DMA进行接收

将USART_CR3中的DMAR位置1可以使能DMA模式进行接收。一旦使能了USART的DMA功能,当接收数据时,RXNE
位置1时,控制器会将数据会从USART_DR自动加载到SRAM区域中。整个数据的接受过程不需要程序的干涉。

10.3 USART典型应用步骤及常用库函数

10.3.1 串口配置一般步骤


10.3.2 常用库函数说明




10.4 应用实例

10.4.1 通过串口向计算机传输100个字节

使用串口线把计算机和电路板的USART1连接在一起,如图11-15所示。编写程序,通过USART1向计算机发送100个字节,这一功能可以通过查询方式、中断方式或中断方式实现。这里以常用的查询方式实现这一功能。

USART1配置参数:
波特率=115 200、
有效数据位=8位、
停止位=1位、
不使用校验方式、
收发模式、
不使用硬件流控。
USART1的TXD和RXD分别使用PA9和PA10。

1.编程要点

(1)使能USART1和复用引脚GPIO的工作时钟。
(2)初始化USART1 相关GPIO引脚,并将引脚复用给USART1。

(3)根据要求,初始化USART1。使用查询方式发送数据。
(4)使能USART1。
(5)循环发送100个字节。

2.主程序

int main(void){               uint16_t  i;               /*初始化USART 配置模式为 115200 8-N-1,中断接收*/    USART1_Config();    for(i=0;i<100;i++)//循环发送100个x   {      /*发送一个字符x*/      USART_SendData(USART1, ‘x’);      /*等待发送数据寄存器为空 ,只有在发送数据寄存器为空的情况下,才能发送下一个字符*/      while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);              }      while(1);           }

3. 串口配置函数

void USART_Config(void){ GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; /*-------------------第1步--------------------*/ /*使能 GPIOA时钟*/ RCC_AHB1PeriphClockCmd( RCC_AHB1Periph_GPIOA,ENABLE); /*使能 UART1 时钟*/ RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);  /*-------------------第2步--------------------*/ /*复用PA9到USART1*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_USART1); /*复用PA10到USART1*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_USART1); /*配置TX引脚为复用功能*/ GPIO_InitStructure.GPIO_Pin=GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF; //复用模式 GPIO_InitStructure.GPIO_OType=GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP; GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz; GPIO_Init(GPIOA,&GPIO_InitStructure);   /*配置RX引脚为复用功能*/ GPIO_InitStructure.GPIO_Pin=GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF ;            //复用模式 GPIO_Init(GPIOA,&GPIO_InitStructure); /*-------------------第3步--------------------*/ /*配置USART1模式*/ USART_InitStructure.USART_BaudRate = 115200; //波特率 USART_InitStructure.USART_WordLength = USART_WordLength_8b;            //8位有效数据位 USART_InitStructure.USART_StopBits = USART_StopBits_1; //1位停止位 USART_InitStructure.USART_Parity = USART_Parity_No ; //无奇偶校验      USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;            //收发模式 USART_Init(USART1, &USART_InitStructure);            //初始化USART1  /*因为使用查询方式发送数据,没有用到中断,因此没有中断相关配置,缺少第4步*/ /*-------------------第5步--------------------*/ USART_Cmd(USART1, ENABLE);//使能USART1}

10.4.2 串口与计算机回显功能实现

回显功能就是把计算机发送给电路板上微控制器的数据通过串口原样返回给计算机,并显示在串口显示软件中。
USART1配置参数:
波特率=115 200、
有效数据位=8位、
停止位=1位、
不使用校验方式、
收发模式、
不使用硬件流控。

USART1的TXD和RXD分别使用PA9和PA10。

1.编程要点

(1)使能USART1和复用引脚GPIO的时钟。
(2)初始化USART1 相关GPIO引脚,并将引脚复用给USART1。
(3)根据要求初始化USART1。
(4)初始化NVIC的USART1串口中断通道,并使能USART1的读取数据寄存器不为空中断(RXNE)。
(5)使能USART1。
(6)编写中断服务程序。

2.主程序

int main(void){ USART_Config(); //初始化USART1 printf("这是一个串口中断接收回显实验\n");//注意只有对printf函数进行重定向才能使用 while(1);}

3. 串口配置函数

void USART_Config(void){ GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; /*-------------------第1步--------------------*/ /*使能 GPIOA时钟*/ RCC_AHB1PeriphClockCmd( RCC_AHB1Periph_GPIOA,ENABLE); /*使能 UART1 时钟*/ RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);  /*-------------------第2步--------------------*/ /*复用PA9到USART1*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_USART1); /*复用PA10到USART1*/ GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_USART1); /*配置TX引脚为复用功能*/ GPIO_InitStructure.GPIO_Pin=GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF; //复用模式 GPIO_InitStructure.GPIO_OType=GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd=GPIO_PuPd_UP; GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz; GPIO_Init(GPIOA,&GPIO_InitStructure);   /*配置RX引脚为复用功能*/ GPIO_InitStructure.GPIO_Pin=GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF ;            //复用模式 GPIO_Init(GPIOA,&GPIO_InitStructure); /*-------------------第3步--------------------*/ /*配置USART1模式*/ USART_InitStructure.USART_BaudRate = 115200; //波特率 USART_InitStructure.USART_WordLength = USART_WordLength_8b; //8位有效数据位 USART_InitStructure.USART_StopBits = USART_StopBits_1; //1位停止位 USART_InitStructure.USART_Parity = USART_Parity_No ; //无奇偶校验      USART_InitStructure.USART_HardwareFlowControl=USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式 USART_Init(USART1, &USART_InitStructure);            //初始化USART1 /*-------------------第4步--------------------*/ //初始化NVIC中的USART1中断通道 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //选择NVIC组2 NVIC_InitStructure.NVIC_IRQChannel=USART1_IRQn; //配置USART为中断源 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1; //抢占优先级为1 NVIC_InitStructure.NVIC_IRQChannelSubPriority=1;           //响应优先级为1 NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE;            //使能中断  NVIC_Init(&NVIC_InitStructure); //初始化配置NVIC  //使能串口的RXNE中断 USART_ITConfig(USART1,USART_IT_RXNE,ENABLE); //使能串口的RXNE中断  /*-------------------第5步--------------------*/ USART_Cmd(USART1,ENABLE);                      //使能USART1}

4.串口中断服务函数

void USART1_IRQHandler(void){    uint8_t ucTemp;    if(USART_GetITStatus(USART1,USART_IT_RXNE)!=RESET) //检测RXNE标志位    {                            ucTemp = USART_ReceiveData( USART1 ); //读取接收数据      USART_SendData(USART1,ucTemp);  //把数据发送给计算机,实现回显功能      }            }

5. printf函数重定向

使用printf函数通过USART1向计算机的串口调试助手打印数据,需要将printf函数内部实现功能重定向到微控制器的USART1。
(1)设置Keil MDK软件中的Use MicroLIB选项。
(2)重定向fputc函数。

2)重定向fputc函数。

int fputc(int ch, FILE* stream){//通过串级发送数据chUSART_SendData(USART1, (uint8_t) ch);      
while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); //等待发送完毕
return ch;}

10.4.3 利用DMA通过串口向计算机1000个字节

利用DMA通过USART1向计算机传输1000个字节,一旦配置好USART1和DMA数据流,在启动DMA传输之后,不需要程序的干预,即可完成数据传输

USART1配置参数:波特率=115 200、有效数据位=8位、停止位=1位、不使用校验方式、收发模式、不使用硬件流控。

1.编程要点

(1)使能USART1、复用引脚GPIO及DMA2的时钟。
(2)初始化USART1相关GPIO引脚,并将引脚复用给USART1。
(3)根据要求,初始化并使能USART1。
(4)初始化DMA2数据流7的通道4,并使能DMA2数据流7。
(5)使能USART1的DMA发送功能,启动DMA数据传输。

2、主程序

uint8_t Send_Buff[1000]; //DMA传输数据源存储区int main(void){  uint16_t i;  USART_Config();                                   //初始化USART1  DMA_Config();                                                         //初始化DMA  for(i=0;i//初始化DMA传输数据源存储区  {    Send_Buff [i]            = 'Z';  }  /*使能USART1的DMA发送,启动DMA数据传输*/  USART_DMACmd(USART1, USART_DMAReq_Tx,ENABLE);           //关键  while(1);                                   //无须CPU干涉,实现数据传输}

3. 串口配置函数

同10.4.1串口配置函数。

4. DMA配置函数

extern uint8_t Send_Buff[1000]; //DMA传输数据源存储区void DMA_Config(void){ DMA_InitTypeDef  DMA_InitStructure; /*-------------------第1步--------------------*/ RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2,ENABLE); //使能DMA2时钟   /*-------------------第2步--------------------*/ DMA_DeInit(DMA2_Stream7);            //复位,禁止DMA2数据流7  while (DMA_GetCmdStatus(DMA2_Stream7)!= DISABLE); //确保DMA数据流禁止成功  /*-------------------第3步--------------------*/ /*初始化DMA2数据流7*/  DMA_InitStructure.DMA_Channel=DMA_Channel_7; //选择通道  DMA_InitStructure.DMA_PeripheralBaseAddr=(uint32_t) SRC_Buffer;//目标地址  DMA_InitStructure.DMA_Memory0BaseAddr=(uint32_t) Send_Buff; //源数据地址  DMA_InitStructure.DMA_DIR=DMA_DIR_MemoryToPeripheral; //存储器到外设模式  DMA_InitStructure.DMA_BufferSize=1000;            //DMA传输数据数目  //禁止自动递增功能  DMA_InitStructure.DMA_PeripheralInc=DMA_PeripheralInc_Disable;            DMA_InitStructure.DMA_MemoryInc=DMA_MemoryInc_Enable; //使能自动递增功能  //8位数据宽度  DMA_InitStructure.DMA_PeripheralDataSize=DMA_PeripheralDataSize_Byte;  DMA_InitStructure.DMA_MemoryDataSize=DMA_PeripheralDataSize_Byte; DMA_InitStructure.DMA_Mode=DMA_Mode_Normal; //正常模式,不循环,只传输一次 DMA_InitStructure.DMA_Priority=DMA_Priority_High;//设置DMA2数据流7优先级为高DMA_InitStructure.DMA_FIFOMode=DMA_FIFOMode_Disable; //禁用FIFO模式 //此时这一参数无用DMA_InitStructure.DMA_FIFOThreshold=DMA_FIFOThreshold_Full; DMA_InitStructure.DMA_MemoryBurst=DMA_MemoryBurst_Single;            //单次模式DMA_InitStructure.DMA_PeripheralBurst=DMA_MemoryBurst_Single; //单次模式DMA_Init(DMA2_Stream7,&DMA_InitStructure); //完成DMA2数据流7配置 /*-------------------第4步--------------------*/ DMA_Cmd(DMA2_Stream7,ENABLE);            //使能DMA2数据流7,启动DMA数据传输   /*-------------------第5步--------------------*/ while (DMA_GetCmdStatus(DMA2_Stream7)!=ENABLE);   //检测DMA数据流是否有效}


end


一口Linux 


关注,回复【1024】海量Linux资料赠送

精彩文章合集


文章推荐

【专辑】ARM
【专辑】粉丝问答
专辑linux入门
专辑计算机网络
专辑Linux驱动
【干货】嵌入式驱动工程师学习路线
【干货】Linux嵌入式所有知识点-思维导图

一口Linux 写点代码,写点人生!
评论 (0)
  •   北京华盛恒辉无人机电磁兼容模拟训练系统软件是专门用于模拟与分析无人机在复杂电磁环境中电磁兼容性(EMC)表现的软件工具。借助仿真技术,它能帮助用户评估无人机在电磁干扰下的性能,优化电磁兼容设计,保障无人机在复杂电磁环境中稳定运行。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为无人机电磁兼容模拟训练系统的推广和应用提供了有力支持。   系统功能   电磁环境建模:支持三维
    华盛恒辉l58ll334744 2025-04-17 15:10 60浏览
  • 一、行业背景与产品需求随着社会对清洁效率与用户体验要求的提升,洗地机行业迎来快速发展期。面对激烈的市场竞争,产品差异化成为制胜关键。传统洗地机普遍存在两大痛点:操作交互单一化与成本控制困境。尤其对于老年用户群体,缺乏语音状态提示和警示功能,导致操作门槛升高;而硬件方案中MCU与语音功能的耦合设计,则增加了系统复杂度与开发成本。WT588F/WTV/WT2003系列语音芯片的引入,为洗地机行业提供了低成本、高集成、强扩展性的解决方案,既满足用户友好性需求,又助力厂商实现硬件架构优化。二、方案核心亮
    广州唯创电子 2025-04-17 08:22 32浏览
  • 自动驾驶技术的飞速发展,正在重新定义未来出行的边界。从感知到决策,从规划到控制,每一个环节都离不开海量、精准的高质量数据支撑。然而,随着传感器数量的增加和数据规模的指数级增长,行业正面临一系列挑战:多源传感器数据的时间同步难题、复杂数据格式的适配、测量技术的灵活性不足、设备集成周期冗长等,这些问题正成为自动驾驶研发与测试的“隐形瓶颈”。基于技术积累与行业洞察,本文分享一套创新的ADAS时空融合数据采集方案。通过硬件与软件的深度协同优化,能够很好地解决数据采集中的核心痛点,还为自动驾驶研发提供了高
    康谋 2025-04-17 09:54 52浏览
  • 现阶段,Zigbee、Z-Wave、Thread、Wi-Fi与蓝牙等多种通信协议在智能家居行业中已得到广泛应用,但协议间互不兼容的通信问题仍在凸显。由于各协议自成体系、彼此割据,智能家居市场被迫催生出大量桥接器、集线器及兼容性软件以在不同生态的设备间构建通信桥梁,而这种现象不仅增加了智能家居厂商的研发成本与时间投入,还严重削减了终端用户的使用体验。为应对智能家居的生态割裂现象,家居厂商需为不同通信协议重复开发适配方案,而消费者则需面对设备入网流程繁琐、跨品牌功能阉割及兼容隐患等现实困境。在此背景
    华普微HOPERF 2025-04-17 17:53 53浏览
  •   无人机电磁环境效应仿真系统:深度剖析   一、系统概述   无人机电磁环境效应仿真系统,专为无人机在复杂电磁环境下的性能评估及抗干扰能力训练打造。借助高精度仿真技术,它模拟无人机在各类电磁干扰场景中的运行状态,为研发、测试与训练工作提供有力支撑。   应用案例   目前,已有多个无人机电磁环境效应仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁环境效应仿真系统。这些成功案例为无人机电磁环境效应仿真系统的推广和应用提供了有力支持。   二、系统功能  
    华盛恒辉l58ll334744 2025-04-17 15:51 78浏览
  • 近日,全球6G技术与产业生态大会(简称“全球6G技术大会”)在南京召开。紫光展锐应邀出席“空天地一体化与数字低空”平行论坛,并从6G通信、感知、定位等多方面分享了紫光展锐在6G前沿科技领域的创新理念及在空天地一体化技术方面的研发探索情况。全球6G技术大会是6G领域覆盖广泛、内容全面的国际会议。今年大会以“共筑创新 同享未来”为主题,聚焦6G愿景与关键技术、安全可信、绿色可持续发展等前沿主题,汇聚国内外24家企业、百余名国际知名高校与科研代表共同商讨如何推动全行业6G标准共识形成。6G迈入关键期,
    紫光展锐 2025-04-17 18:55 140浏览
  • 【摘要/前言】4月春日花正好,Electronica就在浪漫春日里,盛大启幕。2025年4月15-17日,慕尼黑上海电子展于上海新国际博览中心成功举办。伴随着AI、新能源汽车、半导体的热潮,今年的Electronica盛况空前。请跟随Samtec的视角,感受精彩时刻!【 Samtec展台:老虎的朋友圈技术派对】借天时、占地利、聚人和,Samtec 展台人气爆棚!每年展会与大家相聚,总能收获温暖与动力~Samtec展台位于W3展馆716展位,新老朋友相聚于此,俨然一场线下技术派对!前沿D
    电子资讯报 2025-04-17 11:38 42浏览
  • 一、行业背景与需求智能门锁作为智能家居的核心入口,正从单一安防工具向多场景交互终端演进。随着消费者对便捷性、安全性需求的提升,行业竞争已从基础功能转向成本优化与智能化整合。传统门锁后板方案依赖多颗独立芯片(如MCU、电机驱动、通信模块、语音模块等),导致硬件复杂、功耗高、开发周期长,且成本压力显著。如何通过高集成度方案降低成本、提升功能扩展性,成为厂商破局关键。WTVXXX-32N语音芯片通过“单芯片多任务”设计,将语音播报、电机驱动、通信协议解析、传感器检测等功能整合于一体,为智能门锁后板提供
    广州唯创电子 2025-04-18 09:04 125浏览
  • 置信区间反映的是“样本均值”这个统计量的不确定性,因此使用的是标准误(standard error),而不是直接用样本标准差(standard deviation)。标准误体现的是均值的波动程度,而样本标准差体现的是个体数据的波动程度,两者并非一回事,就如下图所显示的一样。下面优思学院会一步一步解释清楚:一、标准差和标准误,究竟差在哪?很多同学对“标准差”和“标准误”这两个概念傻傻分不清楚,但其实差别明显:标准差(Standard Deviation,σ或s):是衡量单个数据点相对于平均值波动的
    优思学院 2025-04-17 13:59 25浏览
  • 1. 在Ubuntu官网下载Ubuntu server  20.04版本https://releases.ubuntu.com/20.04.6/2. 在vmware下安装Ubuntu3. 改Ubuntu静态IP$ sudo vi /etc/netplan/00-installer-config.yaml# This is the network config written by 'subiquity'network:  renderer: networkd&nbs
    二月半 2025-04-17 16:27 70浏览
  • 一、行业背景与需求随着智能化技术的快速发展和用户对便捷性需求的提升,电动车行业正经历从传统机械控制向智能交互的转型。传统电动车依赖物理钥匙、遥控器和独立防盗装置,存在操作繁琐、功能单一、交互性差等问题。用户期待通过手机等智能终端实现远程控制、实时数据监控及个性化交互体验。为此,将蓝牙语音芯片集成至电动车中控系统,成为推动智能化升级的关键技术路径。二、方案概述本方案通过在电动车中控系统中集成WT2605C蓝牙语音芯片,构建一套低成本、高兼容性的智能交互平台,实现以下核心功能:手机互联控制:支持蓝牙
    广州唯创电子 2025-04-18 08:33 118浏览
  •   无人机蜂群电磁作战仿真系统软件,是专门用于模拟、验证无人机蜂群在电磁作战环境中协同、干扰、通信以及对抗等能力的工具。下面从功能需求、技术架构、典型功能模块、发展趋势及应用场景等方面展开介绍:   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提供了有力支持。   功能需求   电磁环境建模:模拟构建复杂多样的电磁环境,涵盖各类电磁干扰源与
    华盛恒辉l58ll334744 2025-04-17 16:49 73浏览
  • 一、汽车智能化浪潮下的蓝牙技术革新随着智能网联汽车的快速发展,车载信息娱乐系统(IVI)正从单一的驾驶辅助向“第三生活空间”转型。蓝牙技术作为车内无线连接的核心载体,承担着音频传输、设备互联、数据交互等关键任务。然而,传统方案中MCU需集成蓝牙协议栈,开发周期长、成本高,且功能扩展性受限。WT2605C蓝牙语音芯片应势而生,以双模蓝牙SOC架构重新定义车用蓝牙系统的开发模式,通过“多、快、好、省”四大核心价值,助力车企快速打造高性价比的智能座舱交互方案。二、WT2605C芯片的四大核心优势1.
    广州唯创电子 2025-04-17 08:38 52浏览
  •   无人机电磁兼容模拟训练系统软件:全方位剖析   一、系统概述   北京华盛恒辉无人机电磁兼容模拟训练系统软件,专为满足无人机于复杂电磁环境下的运行需求而打造,是一款专业训练工具。其核心功能是模拟无人机在电磁干扰(EMI)与电磁敏感度(EMS)环境里的运行状况,助力用户评估无人机电磁兼容性能,增强其在复杂电磁场景中的适应水平。   应用案例   目前,已有多个无人机电磁兼容模拟训练系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机电磁兼容模拟训练系统。这些成功案例为
    华盛恒辉l58ll334744 2025-04-17 14:52 34浏览
  •   无人机蜂群电磁作战仿真系统全解析   一、系统概述   无人机蜂群电磁作战仿真系统是专业的仿真平台,用于模拟无人机蜂群在复杂电磁环境中的作战行为与性能。它构建虚拟电磁环境,模拟无人机蜂群执行任务时可能遇到的电磁干扰与攻击,评估作战效能和抗干扰能力,为其设计、优化及实战应用提供科学依据。   应用案例   目前,已有多个无人机蜂群电磁作战仿真系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润无人机蜂群电磁作战仿真系统。这些成功案例为无人机蜂群电磁作战仿真系统的推广和应用提
    华盛恒辉l58ll334744 2025-04-17 16:29 78浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦