基于电机余热回收的电动汽车热管理性能分析

EV汽车邦 2022-10-28 08:30
为了提高纯电动汽车的能耗经济性,基于电机余热回收提出一种集成热管理系统。在电池热管理模型分析的基础上,建立电机与电池串联换热模型,针对低温环境下电动汽车提出基于电机余热回收的集成热管理系统控制策略,并在不同环境温度下(-10℃~0℃)进行了仿真与验证.仿真结果表明:该构型在加热阶段较传统电池热管理系统可将加热时间缩短111~343S;在保温阶段可避免频繁启动PTC(正温度系数热敏电阻)并将电池温度保持在20℃附近,不仅有利于延长电池寿命,而且可降低4.39%~7.70%的综合能耗;另一方面,该构型可将低温对综合能耗的影响从9.77%降到2.07%,有效地缓解了由环境温度造成的里程焦虑问题。

污染问题的重要略。而低温程和性能是一挑战在低温力电可用能量和可在低温速电使寿因此技术作性能技术之一。
在低温用较多的加热方式有通过PTC系数电阻加热和通过利用热为加热。PTC材料是一敏感导体电阻材料PTC其电阻著增可将加热度维平。PTC加热PTC加热能量通过利用热为加热是比较加热方式可以PTC器换热利用不高利用
步提加热效有部分统与用比冷却液进行通过控制改变冷却的热热的一部分利用称集磁开直接现电统与统的制定低温控制策略并在低温进行仿表明在电度维面均优于传统
热回收的电动汽车集
1.1 集成热管理系统构型
如图所示通过13通过67其中电部包有材料利用根据的不同状态统可以4如表1所示状态82制数从左1~7表示1~7其中8PTC信号其中13为传统联构型模
车集成热 
作模
1表示循环利用热为加热。PTC加热2循环利用热为加热PTC3表示循环此时电PTC不为加热4表示循环的热量通过
1.2 
……
1.3 成热统控制
根据能量总功辐射具体冷却信号等相关关系式为
  一工信号此时此有电信号循环路冷却液对冷却加热表明循环影响包温信号循环
根据循环路冷却状态进行模力电控制在25℃因此图2所示的集成热管理系统逻辑控制策略.图中Tbat为电池温度。处于低温环境时,电池进入工作模式1;当bat≥15℃时,进入工作模式2;此时PTC关闭,由于电池的热辐射bat13℃bat26℃3此时PTC不为加热bat252bat304的是上述略中13℃、1526℃30℃值可根据实际进行作优
成热统控制逻辑
仿分析
2.1 仿
证该统的性能面反应性AMEsim建立仿模型统与传统进行对仿传统控制策略图2集控制策略21341PTC加热bat15℃3此时PTCbat13℃2bat30℃4进行统相如表2所示仿别设-10℃、-50℃.仿10CLTC循环
关参数
2.2 结果分
电池温度如图3、图4所示.显然,图中均有两个阶段,一个阶段电池温度快速上升,另一阶段电池温度缓慢上升且最终维持在某一温度处.为方便描述,图中构型A为集成热管理系统,构型B为传
图3 集成热管理系统电池温度
图4 传统电池热管理系统电池温度
在图3、图4中,电池温度由环境温度第一次加热到15℃,此阶段定义为电池加热阶段.加热阶段结束后直到电池温度大于30℃,此阶段定义为电池保温阶段.加热阶段电池温度图及PTC开关信号,如图5~7所示,其中加热起点分别为环境温度,加热终点为15℃(即策略中PTC开关信号首次关闭),线线传统PTC信号
图5 -10℃加热阶段电池温度及PTC开关
图6 -5℃加热阶段电池温度及PTC开关
图7 0℃加热阶段电池温度及PTC开关
由加热阶段电池温度曲线可以看出,细实线代表的A构型电池温度始终在细虚线表示的B构型电池温度的上方,即集成热管理系统电池温度上升曲线斜率高于传统电池热管理系统.由PTC开关信号线可以看出,集成热管理系统相较于传统电池热管理系统,PTC提前关闭(即电池温度更快到达15℃).不同低温环境下(-10℃~0℃),集成热管理系统相较于传统电池热管理系统,加热阶段所需时间分别缩短了343s、250s、111s。加热阶段所需时间如表3所示.保温阶段的平均温度统计如表4所示
表3 加热阶段所需时间
表4 保温阶段电池平均温度
  2策略统可以将度维25℃传统策略传统度维14℃于工影响实际上统的阶段均温25℃于传统统的14℃
阶段现电度维的方式②电+PTC传统统是通过PTC统与传统仿PTC开闭信号如图8所示。
8PTC-100传统统的PTC关。PTCPTC会增速电一方25℃~40℃相较于传统统将度维14℃统可将20℃利于升电使寿
图8 PTC开关信号
不同环境温度下集成热管理系统与传统电池热管理系统的PTC能耗变化如图9所示.显然,加热阶段后,集成热管理系统PTC能耗不再上升,而传统电池热管理系统的PTC能耗则呈持续上升趋势。因此,集成热管理系统PTC能耗更低.
图9 PTC能耗
低温环境下电池温度和PTC开启时间会直接影响到电池SOC变化,进而影响电动汽车续驶里程.为了分析集成热管理系统与传统电池热管理系统在低温环境下能耗差异,以及不同环境温度对电动汽车续驶里程的影响,本文将低温环境(-10℃~0℃)以及常温环境(25℃)下不同构型在既定工况仿真终止SOC统计如图10所示,不同低温环境下与常温环境下终止SOC差值统计如表5所示。
图10 电池终止SOC
表5 低温与25℃电池终止SOC差值
  10低温统较传统综合均有-10、-5、07.70%、6.12、4.395传统低温下的SOC常温9.77%而受热的利用低温下的SOC常温2.07%。由此统大度对程的影响可以
结论
""问题基于在低温下利用统的满足加热与
低温-10℃~0仿表明加热阶段较传统统的加热111343s快到阶段统可通过电热将在20而且避免PTC加热利于寿车辆体使
通过电PTC加热器开-10~0低了4.39%~7.70综合一方统将9.77%低到了2.07问题。


EV汽车邦 新能源汽车知识交流
评论
  •  在全球能源结构加速向清洁、可再生方向转型的今天,风力发电作为一种绿色能源,已成为各国新能源发展的重要组成部分。然而,风力发电系统在复杂的环境中长时间运行,对系统的安全性、稳定性和抗干扰能力提出了极高要求。光耦(光电耦合器)作为一种电气隔离与信号传输器件,凭借其优秀的隔离保护性能和信号传输能力,已成为风力发电系统中不可或缺的关键组件。 风力发电系统对隔离与控制的需求风力发电系统中,包括发电机、变流器、变压器和控制系统等多个部分,通常工作在高压、大功率的环境中。光耦在这里扮演了
    晶台光耦 2025-01-08 16:03 61浏览
  • 每日可见的315MHz和433MHz遥控模块,你能分清楚吗?众所周知,一套遥控设备主要由发射部分和接收部分组成,发射器可以将控制者的控制按键经过编码,调制到射频信号上面,然后经天线发射出无线信号。而接收器是将天线接收到的无线信号进行解码,从而得到与控制按键相对应的信号,然后再去控制相应的设备工作。当前,常见的遥控设备主要分为红外遥控与无线电遥控两大类,其主要区别为所采用的载波频率及其应用场景不一致。红外遥控设备所采用的射频信号频率一般为38kHz,通常应用在电视、投影仪等设备中;而无线电遥控设备
    华普微HOPERF 2025-01-06 15:29 164浏览
  • 这篇内容主要讨论三个基本问题,硅电容是什么,为什么要使用硅电容,如何正确使用硅电容?1.  硅电容是什么首先我们需要了解电容是什么?物理学上电容的概念指的是给定电位差下自由电荷的储藏量,记为C,单位是F,指的是容纳电荷的能力,C=εS/d=ε0εrS/4πkd(真空)=Q/U。百度百科上电容器的概念指的是两个相互靠近的导体,中间夹一层不导电的绝缘介质。通过观察电容本身的定义公式中可以看到,在各个变量中比较能够改变的就是εr,S和d,也就是介质的介电常数,金属板有效相对面积以及距离。当前
    知白 2025-01-06 12:04 223浏览
  • 彼得·德鲁克被誉为“现代管理学之父”,他的管理思想影响了无数企业和管理者。然而,关于他的书籍分类,一种流行的说法令人感到困惑:德鲁克一生写了39本书,其中15本是关于管理的,而其中“专门写工商企业或为企业管理者写的”只有两本——《为成果而管理》和《创新与企业家精神》。这样的表述广为流传,但深入探讨后却发现并不完全准确。让我们一起重新审视这一说法,解析其中的矛盾与根源,进而重新认识德鲁克的管理思想及其著作的真正价值。从《创新与企业家精神》看德鲁克的视角《创新与企业家精神》通常被认为是一本专为企业管
    优思学院 2025-01-06 12:03 158浏览
  • 本文介绍编译Android13 ROOT权限固件的方法,触觉智能RK3562开发板演示,搭载4核A53处理器,主频高达2.0GHz;内置独立1Tops算力NPU,可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。关闭selinux修改此文件("+"号为修改内容)device/rockchip/common/BoardConfig.mkBOARD_BOOT_HEADER_VERSION ?= 2BOARD_MKBOOTIMG_ARGS :=BOARD_PREBUILT_DTB
    Industio_触觉智能 2025-01-08 00:06 92浏览
  • 大模型的赋能是指利用大型机器学习模型(如深度学习模型)来增强或改进各种应用和服务。这种技术在许多领域都显示出了巨大的潜力,包括但不限于以下几个方面: 1. 企业服务:大模型可以用于构建智能客服系统、知识库问答系统等,提升企业的服务质量和运营效率。 2. 教育服务:在教育领域,大模型被应用于个性化学习、智能辅导、作业批改等,帮助教师减轻工作负担,提高教学质量。 3. 工业智能化:大模型有助于解决工业领域的复杂性和不确定性问题,尽管在认知能力方面尚未完全具备专家级的复杂决策能力。 4. 消费
    丙丁先生 2025-01-07 09:25 117浏览
  • 在智能家居领域中,Wi-Fi、蓝牙、Zigbee、Thread与Z-Wave等无线通信协议是构建短距物联局域网的关键手段,它们常在实际应用中交叉运用,以满足智能家居生态系统多样化的功能需求。然而,这些协议之间并未遵循统一的互通标准,缺乏直接的互操作性,在进行组网时需要引入额外的网关作为“翻译桥梁”,极大地增加了系统的复杂性。 同时,Apple HomeKit、SamSung SmartThings、Amazon Alexa、Google Home等主流智能家居平台为了提升市占率与消费者
    华普微HOPERF 2025-01-06 17:23 204浏览
  • 根据环洋市场咨询(Global Info Research)项目团队最新调研,预计2030年全球无人机锂电池产值达到2457百万美元,2024-2030年期间年复合增长率CAGR为9.6%。 无人机锂电池是无人机动力系统中存储并释放能量的部分。无人机使用的动力电池,大多数是锂聚合物电池,相较其他电池,锂聚合物电池具有较高的能量密度,较长寿命,同时也具有良好的放电特性和安全性。 全球无人机锂电池核心厂商有宁德新能源科技、欣旺达、鹏辉能源、深圳格瑞普和EaglePicher等,前五大厂商占有全球
    GIRtina 2025-01-07 11:02 124浏览
  • 故障现象一辆2017款东风风神AX7车,搭载DFMA14T发动机,累计行驶里程约为13.7万km。该车冷起动后怠速运转正常,热机后怠速运转不稳,组合仪表上的发动机转速表指针上下轻微抖动。 故障诊断 用故障检测仪检测,发动机控制单元中无故障代码存储;读取发动机数据流,发现进气歧管绝对压力波动明显,有时能达到69 kPa,明显偏高,推断可能的原因有:进气系统漏气;进气歧管绝对压力传感器信号失真;发动机机械故障。首先从节气门处打烟雾,没有发现进气管周围有漏气的地方;接着拔下进气管上的两个真空
    虹科Pico汽车示波器 2025-01-08 16:51 70浏览
  • 村田是目前全球量产硅电容的领先企业,其在2016年收购了法国IPDiA头部硅电容器公司,并于2023年6月宣布投资约100亿日元将硅电容产能提升两倍。以下内容主要来自村田官网信息整理,村田高密度硅电容器采用半导体MOS工艺开发,并使用3D结构来大幅增加电极表面,因此在给定的占位面积内增加了静电容量。村田的硅技术以嵌入非结晶基板的单片结构为基础(单层MIM和多层MIM—MIM是指金属 / 绝缘体/ 金属) 村田硅电容采用先进3D拓扑结构在100um内,使开发的有效静电容量面积相当于80个
    知白 2025-01-07 15:02 141浏览
  • 「他明明跟我同梯进来,为什么就是升得比我快?」许多人都有这样的疑问:明明就战绩也不比隔壁同事差,升迁之路却比别人苦。其实,之间的差异就在于「领导力」。並非必须当管理者才需要「领导力」,而是散发领导力特质的人,才更容易被晓明。许多领导力和特质,都可以通过努力和学习获得,因此就算不是天生的领导者,也能成为一个具备领导魅力的人,进而被老板看见,向你伸出升迁的橘子枝。领导力是什么?领导力是一种能力或特质,甚至可以说是一种「影响力」。好的领导者通常具备影响和鼓励他人的能力,并导引他们朝着共同的目标和愿景前
    优思学院 2025-01-08 14:54 61浏览
  • By Toradex 秦海1). 简介嵌入式平台设备基于Yocto Linux 在开发后期量产前期,为了安全以及提高启动速度等考虑,希望将 ARM 处理器平台的 Debug Console 输出关闭,本文就基于 NXP i.MX8MP ARM 处理器平台来演示相关流程。 本文所示例的平台来自于 Toradex Verdin i.MX8MP 嵌入式平台。  2. 准备a). Verdin i.MX8MP ARM核心版配合Dahlia载板并
    hai.qin_651820742 2025-01-07 14:52 108浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦