基于电机余热回收的电动汽车热管理性能分析

EV汽车邦 2022-10-28 08:30
为了提高纯电动汽车的能耗经济性,基于电机余热回收提出一种集成热管理系统。在电池热管理模型分析的基础上,建立电机与电池串联换热模型,针对低温环境下电动汽车提出基于电机余热回收的集成热管理系统控制策略,并在不同环境温度下(-10℃~0℃)进行了仿真与验证.仿真结果表明:该构型在加热阶段较传统电池热管理系统可将加热时间缩短111~343S;在保温阶段可避免频繁启动PTC(正温度系数热敏电阻)并将电池温度保持在20℃附近,不仅有利于延长电池寿命,而且可降低4.39%~7.70%的综合能耗;另一方面,该构型可将低温对综合能耗的影响从9.77%降到2.07%,有效地缓解了由环境温度造成的里程焦虑问题。

污染问题的重要略。而低温程和性能是一挑战在低温力电可用能量和可在低温速电使寿因此技术作性能技术之一。
在低温用较多的加热方式有通过PTC系数电阻加热和通过利用热为加热。PTC材料是一敏感导体电阻材料PTC其电阻著增可将加热度维平。PTC加热PTC加热能量通过利用热为加热是比较加热方式可以PTC器换热利用不高利用
步提加热效有部分统与用比冷却液进行通过控制改变冷却的热热的一部分利用称集磁开直接现电统与统的制定低温控制策略并在低温进行仿表明在电度维面均优于传统
热回收的电动汽车集
1.1 集成热管理系统构型
如图所示通过13通过67其中电部包有材料利用根据的不同状态统可以4如表1所示状态82制数从左1~7表示1~7其中8PTC信号其中13为传统联构型模
车集成热 
作模
1表示循环利用热为加热。PTC加热2循环利用热为加热PTC3表示循环此时电PTC不为加热4表示循环的热量通过
1.2 
……
1.3 成热统控制
根据能量总功辐射具体冷却信号等相关关系式为
  一工信号此时此有电信号循环路冷却液对冷却加热表明循环影响包温信号循环
根据循环路冷却状态进行模力电控制在25℃因此图2所示的集成热管理系统逻辑控制策略.图中Tbat为电池温度。处于低温环境时,电池进入工作模式1;当bat≥15℃时,进入工作模式2;此时PTC关闭,由于电池的热辐射bat13℃bat26℃3此时PTC不为加热bat252bat304的是上述略中13℃、1526℃30℃值可根据实际进行作优
成热统控制逻辑
仿分析
2.1 仿
证该统的性能面反应性AMEsim建立仿模型统与传统进行对仿传统控制策略图2集控制策略21341PTC加热bat15℃3此时PTCbat13℃2bat30℃4进行统相如表2所示仿别设-10℃、-50℃.仿10CLTC循环
关参数
2.2 结果分
电池温度如图3、图4所示.显然,图中均有两个阶段,一个阶段电池温度快速上升,另一阶段电池温度缓慢上升且最终维持在某一温度处.为方便描述,图中构型A为集成热管理系统,构型B为传
图3 集成热管理系统电池温度
图4 传统电池热管理系统电池温度
在图3、图4中,电池温度由环境温度第一次加热到15℃,此阶段定义为电池加热阶段.加热阶段结束后直到电池温度大于30℃,此阶段定义为电池保温阶段.加热阶段电池温度图及PTC开关信号,如图5~7所示,其中加热起点分别为环境温度,加热终点为15℃(即策略中PTC开关信号首次关闭),线线传统PTC信号
图5 -10℃加热阶段电池温度及PTC开关
图6 -5℃加热阶段电池温度及PTC开关
图7 0℃加热阶段电池温度及PTC开关
由加热阶段电池温度曲线可以看出,细实线代表的A构型电池温度始终在细虚线表示的B构型电池温度的上方,即集成热管理系统电池温度上升曲线斜率高于传统电池热管理系统.由PTC开关信号线可以看出,集成热管理系统相较于传统电池热管理系统,PTC提前关闭(即电池温度更快到达15℃).不同低温环境下(-10℃~0℃),集成热管理系统相较于传统电池热管理系统,加热阶段所需时间分别缩短了343s、250s、111s。加热阶段所需时间如表3所示.保温阶段的平均温度统计如表4所示
表3 加热阶段所需时间
表4 保温阶段电池平均温度
  2策略统可以将度维25℃传统策略传统度维14℃于工影响实际上统的阶段均温25℃于传统统的14℃
阶段现电度维的方式②电+PTC传统统是通过PTC统与传统仿PTC开闭信号如图8所示。
8PTC-100传统统的PTC关。PTCPTC会增速电一方25℃~40℃相较于传统统将度维14℃统可将20℃利于升电使寿
图8 PTC开关信号
不同环境温度下集成热管理系统与传统电池热管理系统的PTC能耗变化如图9所示.显然,加热阶段后,集成热管理系统PTC能耗不再上升,而传统电池热管理系统的PTC能耗则呈持续上升趋势。因此,集成热管理系统PTC能耗更低.
图9 PTC能耗
低温环境下电池温度和PTC开启时间会直接影响到电池SOC变化,进而影响电动汽车续驶里程.为了分析集成热管理系统与传统电池热管理系统在低温环境下能耗差异,以及不同环境温度对电动汽车续驶里程的影响,本文将低温环境(-10℃~0℃)以及常温环境(25℃)下不同构型在既定工况仿真终止SOC统计如图10所示,不同低温环境下与常温环境下终止SOC差值统计如表5所示。
图10 电池终止SOC
表5 低温与25℃电池终止SOC差值
  10低温统较传统综合均有-10、-5、07.70%、6.12、4.395传统低温下的SOC常温9.77%而受热的利用低温下的SOC常温2.07%。由此统大度对程的影响可以
结论
""问题基于在低温下利用统的满足加热与
低温-10℃~0仿表明加热阶段较传统统的加热111343s快到阶段统可通过电热将在20而且避免PTC加热利于寿车辆体使
通过电PTC加热器开-10~0低了4.39%~7.70综合一方统将9.77%低到了2.07问题。


EV汽车邦 新能源汽车知识交流
评论 (0)
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 249浏览
  •  一、‌核心降温原理‌1、‌液氮媒介作用‌液氮恒温器以液氮(沸点约77K/-196℃)为降温媒介,通过液氮蒸发吸收热量的特性实现快速降温。液氮在内部腔体蒸发时形成气-液界面,利用毛细管路将冷媒导入蒸发器,强化热交换效率。2、‌稳态气泡控温‌采用‌稳态气泡原理‌:调节锥形气塞与冷指间隙,控制气-液界面成核沸腾条件,使漏热稳定在设定值。通过控温仪调整加热功率,补偿漏热并维持温度平衡,实现80K-600K范围的快速变温。二、‌温度控制机制‌1、‌动态平衡调节‌控温仪内置模糊控制系统,通过温度
    锦正茂科技 2025-04-30 11:31 76浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 179浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 325浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 166浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 134浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 327浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 606浏览
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 66浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 100浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 499浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦