干货·Doherty功放设计

电子万花筒 2022-10-28 07:40
电子万花筒平台核心服务

 中国最活跃的射频微波天线雷达微信技术群

电子猎头:帮助电子工程师实现人生价值! 

电子元器件:价格比您现有供应商最少降低10%

射频微波天线新产品新技术发布平台:让更多优秀的国产射频微波产品得到最好的宣传!发布产品欢迎联系管理,专刊发布!强力曝光!

小电招聘:一个专注于快速帮助电子工程师找到理想工作的栏目即将上线,敬请工程师们关注!



当今世界,通信技术的发展可谓日新月异(准确来说是人类的欲望日新月异...),然而当前人类所依赖的无线通信完全借由无线电,频段还大都集中在C频段以下,相当拥挤。那么,为了在有限的频谱资源内增加信息的传输量,信号调制方式就越来越复杂,出现了如64QAM,256QAM等许多非恒包络的调制方式,如此,就导致信号的峰均比不断的变大。图1-1是信号包络瞬时概率分布与AB类功放瞬时效率曲线的比较图(为啥和AB类比较呢?因为不太久以前基站功放就是这个类型)。

图1-1 AB类功放包络效率与包络概率分布

不难看出,信号分布在不大不小均值附近的概率较大,过大和过小的信号发生的概率比较小。然而从图中亦可发现AB类功放的效率是随着信号功率增加而增加的,因此在均值附近功放的效率很低。当基站功放采用AB类功放时,常常需要从P-1dB回退6dB左右工作,此时的效率就会由50%降到20%(打个比方,不是确定数据),不要小看哦,如果要求输出额定功率100W,你算算有多少功率发热去了。。因此传统的AB类功放就无法满足现代通信系统对功放效率的要求。因此需要设计高效率的功放来满足系统对效率的需求。可能你会说这有何难,用开关类功放啊(比如E类),用谐波控制类功放啊(比如F类),理论效率100%啊。但是很不幸,这些高效率功放的线性校正好难,直接把做DPD的搞死了(搞算法的要加油哦...),同时这些高效功放的工作带宽也不太够,可靠性也不好。好在天无绝人之路,值得庆幸的是,早在1936年,W.H.Doherty先生就发明了Doherty功放架构。这种架构的功放,在功放回退工作时可以同时具有较高的效率和比较好的线性度。这么牛逼的功放架构的原理是什么呢,下面就一步步来解构Doherty功放架构(下面的讲解针对具有了解功放管工作原理的同学,不知道功放工作原理的同学请止步,恶补一下基础知识先...)。

负载牵引原理

在讲解Doherty工作原理之前,要先讲一下它的命根子---负载牵引。那么什么是负载牵引呢?我们都知道功放在工作时会有一个静态工作点以及负载线。以偏置在B类的功放管为例,其在固定负载下意图如图1-2所示。

图1-2 固定负载示意图

从图中可以看出,漏极电流是余弦脉冲,也就是说功放没有出现过压,工作在欠压状态,这个前提很重要,因为此时的效率计算中,基波电流与直流电流的比已经由偏置决定了,功放的效率是与漏极射频电压摆幅成正比的(具体解释写出来得一大篇,有空再码)。因此为了得到高效率,功放应处于电压饱和状态,也就是射频电压摆幅要接近漏极电源电压。图中几种不同颜色的信号代表不同的输入输出功率,可以看出输出功率越小,效率越低(电压摆幅小)。然而,我们的需求是要在输入信号均值区获得高的功放效率,也就是说要在输入信号较小时,电压的摆幅也能接近漏极电源电压。这在固定偏置及负载阻抗的情况下是无法办到的。那么现在如果要求偏置状态不变,要实现高效率怎么办呢?聪明的你可能已经发现,能实现这一目的的方法就是让功放的负载变大,让功放在一个较小输出功率电平上达到电压饱和,获得高效率。这就是所谓的负载调制。图1-4是负载调制的示意图。

图1-3负载调制示意图

从图可以看出随着负载的不断变大(由蓝色变到绿色),功放漏极电压摆幅越来越接近漏极电源电压,功放的效率越来越高。通过选择合适的负载阻抗就可以让功放在输出均值功率时具有高效率。

Doherty如何提升效率?

直接看图2-1。该图是一个典型的两路Doherty。容我略做介绍。从输入开始(作图匆忙,图中未标,就是最左边那个节点),信号经过一个功分器后分为两路,其一路我们称为Carrier路,亦称主路;其二路叫做Peak路,又唤辅路。这两路信号最终在一个叫合路点(就是图中两路信号输出交点处)的地方汇聚(就像长江黄河同出一源(有待考证),最后又汇于汪洋大海一样),然后浩浩荡荡流入负载。

图2-1 典型两路Doherty架构

其实说Doherty提升效率都是指其可以提升回退功率时的效率。如上面所讲,现在的通信信号都具有高的峰均比,功放大都在均值功率处工作。举个例子,比如信号峰均比是6dB,平均功率是100W,那么功放的输出功率最高就要达到400W,因此如果你用一个400W的AB类功放回退到100W工作,那效率低的你自己都怕。因此呢对Doherty架构来讲,其一,总的输出功率是由两个(或更多)的功放管非隔离合路在一起的。如上图中的Carrier和Peak两个管子一起提供输出功率。如此每个管子输出功率就不需要那么大了;其二,在输出均值功率时(回退时),通常只有一个功放管在工作(如上图中只有Carrier管子,Peak关断),这个管子在输出该等级功率时的效率较高,比普通AB类回退要高近30%。以上图为例,来说下Doherty的工作过程。我们从满功率状态向均值功率回退。在满功率状态时carrier路和Peak路都饱和输出,当输出功率慢慢变小时,peak路逐渐关断,Carrier路的负载阻抗较饱和工作状态时变大,这样当功率回退到均值功率时,虽然Carrier电流较负载不变时减小,但其电压摆幅却因为负载阻抗变大而变大,这样也能获得同样的输出功率,但此时效率却大大提升。

上面解释了Doherty为何能在回退功率处提升效率---回退功率时负载阻抗变大,下面说下其“负载阻抗变大”所依赖的有源负载牵引。

何为有源负载牵引?

我们分开看就是:有源+负载牵引。负载牵引已经说过了,那么有源语出何处呢?其实有源是指实现负载牵引的电路元件是有源器件,在Doherty里就是指功放管。我们这里做个约定,就是Carrier路和Peak路的功放可以等效为电流源(目前为止是可以的)。有了这个约定后,我们来分析有源牵引的工作过程。如图2-2所示,将主路和辅路功放等效为两个电流源,分别起名为Im,Ip。,二者的共同负载阻抗为R。

图2-2有源负载牵引示意图

如此,负载上的电压就是由两部分电流在其上面所产压降的叠加。我们现在来做个情景模拟。首先假设电流Ip为0,那么此时只有电流Im流过负载R,负载上的电压V就是Im*R。换言之,从电流源Im向负载方向看过去的阻抗Zm此刻等于V/Im,也就是等于负载阻抗R。好了,接下来我们假设电流Ip从无电流状态慢慢的流出电流到负载,此时从电流源Im看向负载的阻抗Zm是多少呢?还是用电压除以电流嘛。此刻负载上电压是(Im+Ip)*R,电流是Im(这点很重要,因为从电流源Im这一侧看到流入负载的电流一直是Im,没有变化的),那么此时的Zm就是(1+Ip/Im)*R了。聪明的你会发现,电流源Ip对电流源Im的视在阻抗进行了调制(牵引)。假设两电流源的电流大小一样,那么当辅路电流为0时,主路的视在阻抗为负载阻抗R,辅路的视在阻抗为开路状态;当辅路逐渐开启,电流Ip由小变大时主路的视在阻抗由R变为2R。这样通过辅路电流注入的变换就完成了对主路视在阻抗的调制。啰嗦那么多是想在不写公式的情况下把这个有源负载牵引的过程说清楚。其实上面的一堆就是下面的一个式子(还是数学简洁啊),愿意看的请移步。


有人看了上面的乱七八糟的东西,可能心生疑问:这些和Doherty功放提升回退效率如何对应呢?接下来就说一下Doherty里如何进行负载牵引(准确的说是对Carrier路),进而提升回退效率的。为了方面,把图2-1重新贴于此处。

我们以最经典的两路对称Doherty来讲,此时功分器是3dB等功分,主路和辅路所用功放管是相同的(匹配亦相同)。在输入信号比较小的时候(也就是说输出功率不大时),Peak路是关断的,不工作,没有电流。此时从合路点向Peak路看过去的阻抗Rp为无穷大,为开路状态。当输入信号功率慢慢增加,peak路开始打开,有电流流入负载。如前分析,此时主路看到的阻抗Rm就开始慢慢变大,当两路都饱和时,Rm就变为了2R。这个过程就是Peak路对Carrier路的有源负载牵引。那么有人此时可能有会有疑问:不是说Doherty是提升回退状态(输出较小功率)下的效率吗?按你这种分析好像恰恰相反,输出功率变大,Carrier路的负载阻抗变大(效率变大),回退功率时(Peak路减小输出)负载阻抗变小(效率变低)。很好,其实细心的同学会发现,在Carrier路中,功放输出后有个叫阻抗变换器的东西。这个东西其实就是一个无源电路,通常理论分析时用一个1/4波长的变换线来代替。有学过射频的同学应该都清楚,1/4波长变换线特征阻抗确定后,其两端的阻抗是反比关系的,也就是一端阻抗由小变大那么另一端就是由大变小。说到这里上面的疑问应该可以解决了(还不明白的请从头再读十遍。。。)。这个疑问清楚了,那么这回分享的目标也达到了。

作者:谢烟客

欢迎射频微波雷达通信工程师关注公众号



中国最纯粹的射频微波雷达通信工程师微信技术群,欢迎您的加入,来这里一起交流和讨论技术吧!进群记得备注方向和公司名称哦,我们将邀请您进细分群!

用手指按住就可以加入微信技术群哦!



电子万花筒平台自营:Xilinx ALTERA ADI TI ST NXP 镁光 三星 海力士内存芯片 等百余品牌的电子元器件,可接受BOM清单,缺料,冷门,停产,以及国外对华禁运器件业务!


欢迎大家有需求随时发型号清单,我们将在第一时间给您呈上最好的报价,微信(QQ同号):1051197468 也希望您把我们的微信推荐给采购同事,感谢对平台的支持与信任!


与我们合作,您的器件采购成本将相比原有供应商降低10%以上!!不信?那您就来试试吧!!欢迎来撩!!



电子万花筒 电子万花筒,每个电子工程师都在关注的综合型技术与行业服务平台!
评论 (0)
  •   军事领域仿真推演系统的战略价值与发展前瞻   北京华盛恒辉仿真推演系统通过技术创新与应用拓展,已成为作战效能提升的核心支撑。以下从战略应用与未来趋势展开解析:   应用案例   目前,已有多个仿真推演系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润仿真推演系统。这些成功案例为仿真推演系统的推广和应用提供了有力支持。   一、核心战略应用   1. 作战理论创新引擎   依托低成本仿真平台,军事人员可高效验证新型作战概念。   2. 装备全周期优化   覆盖武器
    华盛恒辉l58ll334744 2025-05-14 16:41 94浏览
  • 在全球能源结构转型加速推进与政策驱动的双重作用下,油气输送、智慧水务及化学化工等流体计量场景正面临效率革命与智能化升级的迫切需求。传统机械式流量计虽在工业初期有效支撑了基础计量需求,但其机械磨损、精度衰减与运维困难等固有缺陷已难以适应现代工业对精准化、智能化与可持续发展的多维诉求。在此背景下,超声波流量计则凭借着高精度探测、可实时监测、无侵入式安装、无阻流部件、易于维护与绿色环保等优势实现了突破性发展,成为当代高精度流体计量体系中不可或缺的重要一环。该技术不仅是撬动能源利用效率提升、支撑智慧管网
    华普微HOPERF 2025-05-14 11:49 51浏览
  • 在当下竞争激烈的 AI 赛道,企业高层的变动往往牵一发而动全身,零一万物近来就深陷这样的动荡漩涡。近日,零一万物联合创始人、技术副总裁戴宗宏离职创业的消息不胫而走。这位在大模型基础设施领域造诣颇深的专家,此前在华为云、阿里达摩院积累了深厚经验,在零一万物时更是带领团队短期内完成了千卡 GPU 集群等关键设施搭建,其离去无疑是重大损失。而这并非个例,自 2024 年下半年以来,李先刚、黄文灏、潘欣、曹大鹏等一众联创和早期核心成员纷纷出走。
    用户1742991715177 2025-05-13 21:24 143浏览
  • 一、量子自旋态光学操控1、‌拓扑量子态探测‌磁光克尔效应通过检测拓扑磁结构(如磁斯格明子)的磁光响应,实现对量子材料中非平庸拓扑自旋序的非侵入式表征。例如,二维量子磁体中的“拓扑克尔效应”可通过偏振光旋转角变化揭示斯格明子阵列的动态演化,为拓扑量子比特的稳定性评估提供关键手段。2、‌量子态调控界面‌非厄米磁光耦合系统(如法布里-珀罗腔)通过耗散调控增强克尔灵敏度,可用于奇异点附近的量子自旋态高精度操控,为超导量子比特与光子系统的耦合提供新思路。二、光子量子计算架构优化1、‌光子内存计算器件‌基于
    锦正茂科技 2025-05-13 09:57 52浏览
  • 一、蓝牙射频电路设计的核心价值在智能穿戴、智能家居等物联网设备中,射频性能直接决定通信质量与用户体验。WT2605C等蓝牙语音芯片的射频电路设计,需在紧凑的PCB空间内实现低损耗信号传输与强抗干扰能力。射频走线每0.1dB的损耗优化可使通信距离提升3-5米,而阻抗失配可能导致30%以上的能效损失。二、射频走线设计规范1. 阻抗控制黄金法则50Ω标准阻抗实现:采用4层板时,顶层走线宽度0.3mm(FR4材质,介电常数4.3)双面板需通过SI9000软件计算,典型线宽1.2mm(1.6mm板厚)阻抗
    广州唯创电子 2025-05-13 09:00 30浏览
  •   电磁数据展示系统平台解析   北京华盛恒辉电磁数据展示系统平台是实现电磁数据高效展示、分析与管理的综合性软件体系,以下从核心功能、技术特性、应用场景及发展趋势展开解读:   应用案例   目前,已有多个电磁数据展示系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁数据展示系统。这些成功案例为电磁数据展示系统的推广和应用提供了有力支持。   一、核心功能模块   数据采集与预处理   智能分析处理   集成频谱分析、时频变换等信号处理算法,自动提取时域频域特征;
    华盛恒辉l58ll334744 2025-05-13 10:20 382浏览
  •   基于 2025 年行业权威性与时效性,以下梳理国内知名软件定制开发企业,涵盖综合型、垂直领域及特色技术服务商:   华盛恒辉科技有限公司:是一家专注于高端软件定制开发服务和高端建设的服务机构,致力于为企业提供全面、系统的开发制作方案。在部队政企开发、建设到运营推广领域拥有丰富经验,在教育,工业,医疗,APP,管理,商城,人工智能,部队软件、工业软件、数字化转型、新能源软件、光伏软件、汽车软件,ERP,系统二次开发,CRM等领域有很多成功案例。   五木恒润科技有限公司:是一家专业的部队信
    华盛恒辉l58ll334744 2025-05-12 16:13 258浏览
  • 感谢面包板论坛组织的本次测评活动,本次测评的对象是STM32WL Nucleo-64板 (NUCLEO-WL55JC) ,该测试板专为LoRa™应用原型构建,基于STM32WL系列sub-GHz无线微控制器。其性能、功耗及特性组合经过精心挑选,支持通过Arduino® Uno V3连接,并利用ST morpho接头扩展STM32WL Nucleo功能,便于访问多种专用屏蔽。STM32WL Nucleo-64板集成STLINK-V3E调试器与编程器,无需额外探测器。该板配备全面的STM
    无言的朝圣 2025-05-13 09:47 199浏览
  •   军事仿真推演系统平台核心解析   北京华盛恒辉军事仿真推演系统平台以计算机仿真技术为基石,在功能、架构、应用及效能上展现显著优势,成为提升军事作战与决策能力的核心工具。   应用案例   目前,已有多个仿真推演系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润仿真推演系统。这些成功案例为仿真推演系统的推广和应用提供了有力支持。   一、全流程功能体系   精准推演控制:覆盖推演启动至结束全流程。   智能想定管理:集成作战信息配置、兵力部署功能。   数据模型整合
    华盛恒辉l58ll334744 2025-05-14 17:11 79浏览
  • 文/Leon编辑/cc孙聪颖‍2025年1月至今,AI领域最出圈的除了DeepSeek,就是号称首个“通用AI Agent”(智能体)的Manus了,其邀请码一度被炒到8万元。很快,通用Agent就成为互联网大厂、AI独角兽们的新方向,迅速地“卷”了起来。国外市场,Open AI、Claude、微软等迅速推出Agent产品或构建平台,国内企业也在4月迅速跟进。4月,字节跳动、阿里巴巴、百度纷纷入局通用Agent市场,主打复杂的多任务、工作流功能,并对个人用户免费。腾讯则迅速更新腾讯元器的API接
    华尔街科技眼 2025-05-12 22:29 165浏览
  • 在电动出行领域的激烈角逐中,九号公司呈上一份营收净利双涨的成绩单。报告显示,九号公司2024年全年实现总营收141.96亿元,同比增长38.87%;扣非后归母净利润达10.62亿元,同比大幅增长157.24%。更值得关注的是,公司整体毛利率提升3.06个百分点至28.24%,展现出强劲的盈利能力。可当将视角拉远,对标爱玛、雅迪等行业巨擘,便会发现九号的成绩不过是小巫见大巫。财报数据显示,爱玛 2024 年营收 216.06 亿元,净利润 19.8
    用户1742991715177 2025-05-12 19:31 24浏览
  • 在全球供应链紧张和国产替代需求推动下,国产存储芯片产业快速发展,形成设计到封测一体化的完整生态。北京君正、兆易创新、紫光国芯、东芯股份、普冉股份和佰维存储等六大上市公司在NOR/NAND Flash、DRAM、嵌入式存储等领域布局各具特色,推动国产替代提速。贞光科技代理的品牌紫光国芯,专注DRAM技术,覆盖嵌入式存储与模组解决方案,为多领域客户提供高可靠性产品。随着AI、5G等新兴应用兴起,国产存储厂商有望迎来新一轮增长。存储芯片分类与应用易失性与非易失性存储芯片易失性存储芯片(Volatile
    贞光科技 2025-05-12 16:05 239浏览
  • 在当下的商业版图中,胖东来宛如一颗璀璨的明星,散发着独特的光芒。它以卓越的服务、优质的商品以及独特的企业文化,赢得了消费者的广泛赞誉和业界的高度关注。然而,近期胖东来与自媒体博主之间的一场激烈对战,却如同一面镜子,映照出了这家企业在光环背后的真实与挣扎,也引发了我们对于商业本质、企业发展以及舆论生态的深入思考。​冲突爆发:舆论场中的硝烟弥漫​2025年4月,抖音玉石博主“柴怼怼”(粉丝约28万)突然发难,发布多条视频直指河南零售巨头胖东来。他言辞犀利,指控胖东来在玉石销售方面存在暴利行为,声称其
    疯人评 2025-05-14 13:49 72浏览
  •   舰艇电磁兼容分析与整改系统平台解析   北京华盛恒辉舰艇电磁兼容分析与整改系统平台是保障海军装备作战效能的关键技术,旨在确保舰艇电子设备在复杂电磁环境中协同运行。本文从架构、技术、流程、价值及趋势五个维度展开解析。   应用案例   目前,已有多个舰艇电磁兼容分析与整改系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润舰艇电磁兼容分析与整改系统。这些成功案例为舰艇电磁兼容分析与整改系统的推广和应用提供了有力支持。   一、系统架构:模块化智能体系   电磁环境建模:基
    华盛恒辉l58ll334744 2025-05-14 11:22 87浏览
  •   电磁数据管理系统深度解析   北京华盛恒辉电磁数据管理系统作为专业的数据处理平台,旨在提升电磁数据的处理效率、安全性与可靠性。以下从功能架构、核心特性、应用场景及技术实现展开分析:   应用案例   目前,已有多个电磁数据管理系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁数据管理系统。这些成功案例为电磁数据管理系统的推广和应用提供了有力支持。   一、核心功能模块   数据采集与接入:实时接收天线、频谱仪等设备数据,兼容多协议接口,确保数据采集的全面性与实时性
    华盛恒辉l58ll334744 2025-05-13 10:59 293浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦