干货|详谈米勒效应对MOSFET开关过程的危害

电子工程世界 2022-10-25 07:30

引言

MOSFET的原意是:MOS(Metal Oxide Semiconductor金属氧化物半导体),FET(Field Effect Transistor场效应晶体管),即以金属层(M)的栅极隔着氧化层(O)利用电场的效应来控制半导体(S)的场效应晶体管。


功率场效应晶体管也分为结型和绝缘栅型,但通常主要指绝缘栅型中的MOS型(Metal Oxide Semiconductor FET),简称功率MOSFET(Power MOSFET)。结型功率场效应晶体管一般称作静电感应晶体管(Static Induction Transistor——SIT)。其特点是用栅极电压来控制漏极电流,驱动电路简单,需要的驱动功率小,开关速度快,工作频率高,热稳定性优于GTR, 但其电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。


对于MOSFET,米勒效应(Miller Effect)指其输入输出之间的分布电容(栅漏电容)在反相放大作用下,使得等效输入电容值放大的效应。由于米勒效应,MOSFET栅极驱动过程中,会形成平台电压,引起开关时间变长,开关损耗增加,给MOS管的正常工作带来非常不利的影响。


本文详细分析了MOS管开通关断过程,以及米勒平台的形成。然后结合实际应用电路中说明了MOSFET开关中电压尖峰的形成原因和可能带来的后果,并给出了相应的解决方案。

MOSFET结构及寄生电容的分布

MOSFET结构


图1. 垂直型MOSFET结构

图1是垂直型MOSFET的结构,它是一个由P区域和 N+ 的源区组成的双扩散结构。漏极(drain)和源极(source)分别放在晶圆的两面,这样的结构适合制造大功率器件。因为可以通过增加外延层(epitaxial layer)的长度,来增加漏源极之间的电流等级,提高器件的击穿电压能力。另外从图中,还可以清晰看出MOSFET的寄生体二极管。


寄生电容


图2. MOSFET的寄生电容及等效电路

MOSFET的寄生电容主要包括栅源电容(Cgs)、栅漏电容(Cgd)以及漏源电容(Cds)。从图2中左图看到,Cds是由漏极和源极之间的结电容形成,Cgd栅极和漏极间的耦合电容。Cgs则较为复杂,由栅极和源极金属电极之间的电容Co、栅极和 N+ 源极扩散区的电容 CN+ ,以及栅极和扩散区P区的电容Cp组成。



一般器件的手册中,都会以下列形式给出MOSFET的寄生电容,

输入电容: 

输出电容: 

反向传输电容: 

米勒平台的形成

考虑到电感负载的广泛应用,本文以电感负载来分析米勒平台的形成。由于MOS管开关的时间极短,电感电流可以认为不变,当作恒流源来处理。图3是栅极驱动电路以及开通时MOS管的电流电压波形。


图3. 栅极驱动电路及其波形

MOS管的开通过程可以分为三个阶段。


t0-t1 阶段


图4. t0-t1时的等效电路

从 t0 时刻开始,栅极驱动电流给栅源电容Cgs充电。Vgs从0V上升到Vgs(th)时,MOS管处于截止状态,Vds保持不变,Id为零。


t1-t2 阶段


图5. t1-t2时的等效电路

从t1时刻开始,MOS管因为Vgs超过其阈值电压而开始导通。Id开始上升,电感电流流经续流二极管DF的电流一部分换向流入MOS管。但是此时二极管仍然导通,MOS两端的电压仍然被二极管钳位保持不变。驱动电流只给栅源电容Cgs充电。到t2时刻,Id上升到和电感电流一样,换流结束。


在t1-t2这段时间内,电感电流上升过程中Vds会稍微下降。这是因为Id上升的di/dt会在引线电感等杂散电感上形成压降,所以MOS管两端的电压会稍稍下降。

这段时间内,MOS管处于饱和区。


t2-t3 阶段


图6. t2-t3时的等效电路

从t2时刻开始,由于MOSFET中的电流已经上升达到电感负载中的电流,MOS管两端的电压不再被VDD钳位。因此,漏源之间的反型层沟道也不再被VDD束缚而呈楔形分布,Vds开始降低 ,栅极驱动电流开始给Cgd充电。驱动电流全部用来给Cgd充电,栅极电压Vgs保持不变呈现出一段平台期,这个平台称为米勒平台。


米勒平台一直维持到Vds电压降低到MOS管进入线性区。可以注意到,在米勒平台期,Vds电压下降的斜率分为两段,这与MOSFET的结构有关。在导通的不同阶段Cgd电容发生变化的缘故。


在这个阶段,MOS管仍然处于饱和区。


这里顺便说一下,为什么漏源电压在MOSFET进入米勒平台后开始下降。


在进入米勒平台前,漏源电压由于被二极管钳位保持VDD不变,MOS管的导电沟道处于夹断状态。当MOSFET的电流和电感电流相同时,MOSFET的漏极不再被钳位。这也就意味着,导电沟道由于被VDD钳位而导致的夹断状态被解除,导电沟道靠近漏极侧的沟道渐渐变宽,从而使沟道的导通电阻降低。在漏极电流Id不变的情况下,漏源电压Vds就开始下降。



当漏源电压Vds下降后,栅极驱动电流就开始给米勒电容Cgd充电。几乎所有的驱动电流都用来给Cgd充电,所以栅极电压保持不变。这个状态一直维持到,沟道刚好处于预夹断状态,MOS管进入线性电阻区。


图7. MOSFET在不同漏极电压时,导电沟道的变化情况


t3-t4 阶段


图8. t3-t4时的等效电路


从t3时刻开始,MOSFET工作在线性电阻区。栅极驱动电流同时给Cgs和Cgd充电,栅极电压又开始继续上升。由于栅极电压增加,MOSFET的导电沟道也开始变宽,导通压降会进一步降低。当Vgs增加到一定电压时,MOS管进入完全导通状态。


现在总结一下,在MOSFET驱动过程中,它是怎么打开的。图9标示了在开通时不同阶段对应在MOSFET输出曲线的位置。当Vgs超过其阈值电压(t1)后,Id电流随着Vgs的增加而上升。当Id上升到和电感电流值时,进入米勒平台期(t2-t3)。这个时候Vds不再被VDD钳位,MOSFET夹断区变小,直到MOSFET进入线性电阻区。进入线性电阻区(t3)后,Vgs继续上升,导电沟道也随之变宽,MOSFET导通压降进一步降低。MOSFET完全导通(t4)。


图9. MOSFET输出曲线

米勒效应对MOSFET开关过程的影响

下面以图10中电机控制电路来说明米勒效应对MOSFET开通关断过程的影响。在图10控制电路中,上管导通时,VDD通过Q1、Q4对电机进行励磁;上管关断时,电机通过Q4、Q3进行去磁。在整个工作过程中,Q4一直保持开通,Q1, Q2交替开通来对电机转子进行励磁和去磁。


图10. 电机控制电路

图11,图12是上下管开通关断时驱动电压测试波形。可以清楚的看到,在上管开通和关断时,下管栅极上会产生一个尖峰,尖峰的电压增加了上下管同时导通的风险,严重时会造成非常大的电流同时流过上下管,损坏器件。


图11. 上管开通下管关断时的测试波形
图12. 上管关断上管开通时的测试波形

下管开通关断出现的这种波形是由漏栅电容导致的寄生开通现象(如图13所示)。在下管关断后,上管米勒平台结束时,桥臂中点电压由0升到VDD,MOSFET的源极和漏极之间产生陡峭的的dV/dt。由此在漏栅电容产生的电流会流到栅极,经栅极电阻到地,这样就会在栅极电阻上产生的电压降。这种情况,就会可能发生上下管同时导通,损坏器件。


图13. MOSFET寄生开通机制

下管的这个Vgs尖峰电压(也有公司称之为Vgs bouncing)可以表达为:



Rgoff驱动关断电阻,Rg,ls(int)为MOSFET栅极固有电阻,Rdrv为驱动IC的电阻。从公式(1)可以看到,该电压与Rgtot和Cgd呈正向相关。



所以解决这个问题有两类方法:


1. 减小Rgtot。由公式(2)知道,Rg,ls(int)由器件本身决定,Rdrv由驱动IC决定,所以一般是选择合适的Rg来平衡该Vgs bouncing电压。


2. 选择Crss/Ciss(即Cgd/Cgs)低的MOSFET有助于降低Vgs尖峰电压值。或者在MOSFET栅源之间并上一个电容,也会吸收dV/dt产生的漏删电流。图15是在下管的GS两端并联5.5nF电容后的开关波形,可以看到电压明显降低,由图11中的3.1V降低到1.7V,大大降低了上下管贯通的风险。


图15. 下管GS并上5.5nF电容的波形


同理,上管关断至米勒平台结束时,下管开通前,桥臂中点电压由VDD降为0,MOSFET的源极和漏极之间产生陡峭的的dV/dt。由此就会在栅极上面产生一个负压。


同时,由图11,图12,可以观察到,下管开通关断过程中,都没有出现米勒平台现象。这是因为在其开通关断时,由于Motor中的电流经过下管的体二极管续流,DS两端电压很小,所以米勒平台也就形成不了了。

来源:zhihu等

推荐阅读

干货|嵌入式开发,出现了Bug该怎么定位解决?
干货|PCB设计中最常见到的五个错误
干货 | 如何实现按键的短按、长按检测?
干货|放大电路(三极管)的反馈原理,还得这么看!

添加微信回复“进群”

拉你进技术交流群!

国产芯|汽车电子|物联网|新能源|电源|工业|嵌入式…..  

众号内回复您想搜索的任意内容,如问题关键字、技术名词、bug代码等,就能轻松获得与之相关的专业技术内容反馈。快去试试吧!

如果您想经常看到我们的文章,可以进入我们的主页,点击屏幕右上角“三个小点”,点击“设为星标”。
欢迎扫码关注


电子工程世界 关注EEWORLD电子工程世界,即时参与讨论电子工程世界最火话题,抢先知晓电子工程业界资讯。
评论
  • 沉寂已久的无人出租车赛道,在2024年突然升温了。前脚百度旗下萝卜快跑,宣布无人驾驶单量突破800万单;后脚特斯拉就于北京时间10月11日上午,召开了以“We,Robot”为主题的发布会,公布了无人驾驶车型Cybercab和Robovan,就连低调了好几个月的滴滴也在悄悄扩编,大手笔加码Robotaxi。不止是滴滴、百度、特斯拉,作为Robotaxi的重磅选手,文远知行与小马智行,也分别在10月份先后启动美股IPO,极氪也在近日宣布,其与Waymo合作开发的无人驾驶出行汽车将大规模量产交付,无人
    刘旷 2024-12-19 11:39 123浏览
  • 由于该文反应热烈,受到了众多工程师的关注,衷心感谢广大优秀工程师同仁的建言献策。特针对该技术点更新一版相关内容! 再次感谢大家的宝贵建议!填充铜(Solid Copper)和网格铜(Hatched Copper)是PCB设计中两种不同的铺铜方式,它们在电气性能、热管理、加工工艺和成本方面存在一些区别:1. 电气性能:填充铜:提供连续的导电层,具有极低的电阻和最小的电压降。适合大电流应用,并能提供优秀的电磁屏蔽效果,显著提高电磁兼容性。网格铜:由于铜线之间存在间隔,电阻相对较高,电压降也
    为昕科技 2024-12-18 17:11 108浏览
  • 百佳泰特为您整理2024年12月各大Logo的最新规格信息。——————————USB▶ 百佳泰获授权进行 USB Active Cable 认证。▶ 所有符合 USB PD 3.2 标准的产品都有资格获得USB-IF 认证——————————Bluetooth®▶ Remote UPF Testing针对所有低功耗音频(LE Audio)和网格(Mesh)规范的远程互操作性测试已开放,蓝牙会员可使用该测试,这是随时测试产品的又一绝佳途径。——————————PCI Express▶ 2025年
    百佳泰测试实验室 2024-12-20 10:33 49浏览
  • //```c #include "..\..\comm\AI8051U.h"  // 包含头文件,定义了硬件寄存器和常量 #include "stdio.h"              // 标准输入输出库 #include "intrins.h"         &n
    丙丁先生 2024-12-20 10:18 51浏览
  • You are correct that the length of the via affects its inductance. Not only the length of the via, but also the shape and proximity of the return-current path determines the inductance.   For example, let's work with a four-layer board h
    tao180539_524066311 2024-12-18 15:56 119浏览
  •         不卖关子先说感受,真本书真是相见恨晚啊。字面意思,见到太晚了,我刚毕业或者刚做电子行业就应该接触到这本书的。我自己跌跌撞撞那么多年走了多少弯路,掉过多少坑,都是血泪史啊,要是提前能看到这本书很多弯路很多坑都是可以避免的,可惜这本书是今年出的,羡慕现在的年轻人能有这么丰富完善的资料可以学习,想当年我纯靠百度和论坛搜索、求助啊,连个正经师傅都没有,从软件安装到一步一布操作纯靠自己瞎摸索,然后就是搜索各种教程视频,说出来都是泪啊。  &
    DrouSherry 2024-12-19 20:00 47浏览
  • ​本文介绍PC电脑端运行VMware环境下,同时烧录固件检测不到设备的解决方法。触觉智能Purple Pi OH鸿蒙开发板演示,搭载了瑞芯微RK3566芯片,类树莓派设计,Laval官方社区主荐,已适配全新OpenHarmony5.0 Release系统!PC端烧录固件时提示没有发现设备按照各型号烧录手册中进入loader模式的操作方法,让开发板连接到PC端。正常来说开发板烧录时会显示“发现一个LOADER设备”,异常情况下,会提示“没有发现设备”,如下图所示: 解决步骤当在烧录系统固
    Industio_触觉智能 2024-12-18 18:07 78浏览
  • By Toradex秦海1). 简介为了保证基于 IEEE 802.3 协议设计的以太网设备接口可以互相兼容互联互通,需要进行 Ethernet Compliance 一致性测试,相关的技术原理说明请参考如下文章,本文就不赘述,主要展示基于 NXP i.MX8M Mini ARM 处理器平台进行 1000M/100M/10M 以太网端口进行一致性测试的测试流程。https://www.toradex.com
    hai.qin_651820742 2024-12-19 15:20 92浏览
  • 户外照明的“璀璨王者”,艾迈斯欧司朗OSCONIQ® C3030降临啦全球领先的光学解决方案供应商艾迈斯欧司朗(瑞士证券交易所股票代码:AMS)近日宣布,推出新一代高性能LED——OSCONIQ® C 3030。这款尖端LED系列专为严苛的户外及体育场照明环境而设计,兼具出色的发光强度与卓越的散热效能。其支持高达3A的驱动电流及最大9W的功率输出,以紧凑扁平封装呈现卓越亮度和可靠性,确保高强度照明持久耐用且性能出众。应用领域01体育场及高杆照明OSCONIQ® C 3030以卓越的光通量密度、出
    艾迈斯欧司朗 2024-12-18 14:25 112浏览
  • 耳机虽看似一个简单的设备,但不仅只是听音乐功能,它已经成为日常生活和专业领域中不可或缺的一部分。从个人娱乐到专业录音,再到公共和私人通讯,耳机的使用无处不在。使用高质量的耳机不仅可以提供优良的声音体验,还能在长时间使用中保护使用者听力健康。耳机产品的质量,除了验证产品是否符合法规标准,也能透过全面性的测试和认证过程,确保耳机在各方面:从音质到耐用性,再到用户舒适度,都能达到或超越行业标准。这不仅保护了消费者的投资,也提升了该公司在整个行业的产品质量和信誉!客户面临到的各种困难一家耳机制造商想要透
    百佳泰测试实验室 2024-12-20 10:37 81浏览
  • 汽车驾驶员监控系统又称DMS,是一种集中在车辆中的技术,用于实时跟踪和评估驾驶员状态及驾驶行为。随着汽车产业智能化转型,整合AI技术的DMS逐渐成为主流,AI模型通过大量数据进行持续训练,使得驾驶监控更加高效和精准。 驾驶员监测系统主要通过传感器、摄像头收集驾驶员的面部图像,定位头部姿势、人脸特征及行为特征,并通过各种异常驾驶行为检测模型运算来识别驾驶员的当前状态。如果出现任何异常驾驶行为(如疲劳,分心,抽烟,接打电话,无安全带等),将发出声音及视觉警报。此外,驾驶员的行为数据会被记录
    启扬ARM嵌入式 2024-12-20 09:14 39浏览
  •         在上文中,我们介绍了IEEE 802.3cz[1]协议提出背景,旨在定义一套光纤以太网在车载领域的应用标准,并介绍了XMII以及PCS子层的相关机制,在本篇中,将围绕IEEE 802.3cz-MultiGBASE-AU物理层的两个可选功能进行介绍。EEE功能        节能以太网(Energy-Efficient Ethernet)是用于在网络空闲时降低设备功耗的功能,在802.3cz的定义中,链
    经纬恒润 2024-12-19 18:47 35浏览
  • 在强调可移植性(portable)的年代,人称「二合一笔电」的平板笔电便成为许多消费者趋之若鹜的3C产品。说到平板笔电,不论是其双向连接设计,面板与键盘底座可分离的独特功能,再加上兼具笔电模式、平板模式、翻转模式及帐篷模式等多种使用方式,让使用者在不同的使用情境下都能随意调整,轻巧灵活的便利性也为多数消费者提供了绝佳的使用体验。然而也正是这样的独特设计,潜藏着传统笔电供货商在产品设计上容易忽视的潜在风险。平板笔电Surface Pro 7+ 的各种使用模式。图片出处:Microsoft Comm
    百佳泰测试实验室 2024-12-19 17:40 137浏览
  • 随着工业自动化和智能化的发展,电机控制系统正向更高精度、更快响应和更高稳定性的方向发展。高速光耦作为一种电气隔离与信号传输的核心器件,在现代电机控制中扮演着至关重要的角色。本文将详细介绍高速光耦在电机控制中的应用优势及其在实际工控系统中的重要性。高速光耦的基本原理及优势高速光耦是一种光电耦合器件,通过光信号传递电信号,实现输入输出端的电气隔离。这种隔离可以有效保护电路免受高压、电流浪涌等干扰。相比传统的光耦,高速光耦具备更快的响应速度,通常可以达到几百纳秒到几微秒级别的传输延迟。电气隔离:高速光
    晶台光耦 2024-12-20 10:18 69浏览
  • 习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习笔记&记录学习习笔记&记学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记录学习学习笔记&记
    youyeye 2024-12-18 14:02 110浏览
我要评论
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦