这份PCB的Checklist,值得收藏!

嵌入式ARM 2022-10-24 12:01

1.

在流程上接收到的资料是否齐全(包括:原理图、*.brd文件、料单、PCB设计说明以及PCB设计或更改要求、标准化要求说明、工艺设计说明文件)

2.

确认PCB模板是最新的

3.

确认模板的定位器件位置无误

4.

PCB设计说明以及PCB设计或更改要求、标准化要求说明是否明确

5.

确认外形图上的禁止布放器件和布线区已在PCB模板上体现

6.

比较外形图,确认PCB所标注尺寸及公差无误, 金属化孔和非金属化孔定义准确

7.

确认PCB模板准确无误后最好锁定该结构文件,以免误操作被移动位置




布局后检查阶段


器件检查

8.

确认所有器件封装是否正确.

9.

母板与子板,单板与背板,确认信号对应,位置对应,连接器方向及丝印标识正确,且子板有防误插措施,子板与母板上的器件不应产生干涉

10.

元器件是否100% 放置

11.

打开器件TOP和BOTTOM层的place-bound, 查看重叠引起的DRC是否允许

12.

Mark点是否足够且必要

13.

较重的元器件,应该布放在靠近PCB支撑点或支撑边的地方,以减少PCB的翘曲

14.

与结构相关的器件布好局后最好锁住,防止误操作移动位置

15.

压接插座周围5mm范围内,正面不允许有高度超过压接插座高度的元件,背面不允许有元件或焊点

16.

确认器件布局是否满足工艺性要求(重点关注BGA、PLCC、贴片插座)

17.

金属壳体的元器件,特别注意不要与其它元器件相碰,要留有足够的空间位置

18.

接口相关的器件尽量靠近接口放置,背板总线驱动器尽量靠近背板连接器放置

19.

波峰焊面的CHIP器件是否已经转换成波峰焊封装,

20.

手工焊点是否超过50个

21.

在PCB上轴向插装较高的元件,应该考虑卧式安装。留出卧放空间。并且考虑固定方式,如晶振的固定焊盘

22.

需要使用散热片的器件,确认与其它器件有足够间距,并且注意散热片范围内主要器件的高度

功能检查

23.

数模混合板的数字电路和模拟电路器件布局时是否已经分开,信号流是否合理

24.

A/D转换器跨模数分区放置。

25.

时钟器件布局是否合理

26.

高速信号器件布局是否合理

27.

端接器件是否已合理放置

(源端匹配串阻应放在信号的驱动端;中间匹配的串阻放在中间位置;终端匹配串阻应放在信号的接收端)

28.

IC器件的去耦电容数量及位置是否合理

29.

信号线以不同电平的平面作为参考平面,当跨越平面分割区域时,参考平面间的连接电容是否靠近信号的走线区域。

30.

保护电路的布局是否合理,是否利于分割

31.

单板电源的保险丝是否放置在连接器附近,且前面没有任何电路元件

32.

确认强信号与弱信号(功率相差30dB)电路分开布设

33.

是否按照设计指南或参考成功经验放置可能影响EMC实验的器件。如:面板的复位电路要稍靠近复位按钮

34.

对热敏感的元件(含液态介质电容、晶振)尽量远离大功率的元器件、散热器等热源

35.

布局是否满足热设计要求,散热通道(根据工艺设计文件来执行)

电源

36.

是否IC电源距离IC过远

37.

LDO及周围电路布局是否合理

38.

模块电源等周围电路布局是否合理

39.

电源的整体布局是否合理

规则设置

40.

是否所有仿真约束都已经正确加到Constraint Manager中

41.

是否正确设置物理和电气规则(注意电源网络和地网络的约束设置)

42.

Test Via、Test Pin的间距设置是否足够

43.

叠层的厚度和方案是否满足设计和加工要求

44.

所有有特性阻抗要求的差分线阻抗是否已经经过计算,并用规则控制










线后检查阶段

数模

45.

数字电路和模拟电路的走线是否已分开,信号流是否合理

46.

A/D、D/A以及类似的电路如果分割了地,那么电路之间的信号线是否从两地之间的桥接点上走(差分线例外)?

47.

必须跨越分割电源之间间隙的信号线应参考完整的地平面。

48.

如果采用地层设计分区不分割方式,要确保数字信号和模拟信号分区布线。


时钟和高速部分

49.

高速信号线的阻抗各层是否保持一致

50.

高速差分信号线和类似信号线,是否等长、对称、就近平行地走线?

51.

确认时钟线尽量走在内层

52.

确认时钟线、高速线、复位线及其它强辐射或敏感线路是否已尽量按3W原则布线

53.

时钟、中断、复位信号、百兆/千兆以太网、高速信号上是否没有分叉的测试点?

54.

LVDS等低电平信号与TTL/CMOS信号之间是否尽量满足了10H(H为信号线距参考平面的高度)?

55.

时钟线以及高速信号线是否避免穿越密集通孔过孔区域或器件引脚间走线?

56.

时钟线是否已满足(SI约束)要求

(时钟信号走线是否做到少打过孔、走线短、参考平面连续,主要参考平面尽量是GND;

若换层时变换了GND主参考平面层,在离过孔200mil范围之内是GND过孔)

若换层时变换不同电平的主参考平面,在离过孔200mil范围之内是否有去耦电容)?

57.

差分对、高速信号线、各类BUS是否已满足(SI约束)要求

E

M

C

可靠性

58.

对于晶振,是否在其下布一层地?是否避免了信号线从器件管脚间穿越?对高速敏感器件,是否避免了信号线从器件管脚间穿越?

59.

单板信号走线上不能有锐角和直角(一般成 135 度角连续转弯,射频信号线最好采用圆弧形或经过计算以后的切角铜箔)

60.

对于双面板,检查高速信号线是否与其回流地线紧挨在一起布线;对于多层板,检查高速信号线是否尽量紧靠地平面走线

61.

对于相邻的两层信号走线,尽量垂直走线

62.

避免信号线从电源模块、共模电感、变压器、滤波器下穿越

63.

尽量避免高速信号在同一层上的长距离平行走线

64.

板边缘还有数字地、模拟地、保护地的分割边缘是否有加屏蔽过孔?多个地平面是否用过孔相连?过孔距离是否小于最高频率信号波长的1/20?

65.

浪涌抑制器件对应的信号走线是否在表层短且粗?

66. 45

确认电源、地层无孤岛、无过大开槽、无由于通孔隔离盘过大或密集过孔所造成的较长的地平面裂缝、无细长条和通道狭窄现象


67.

是否在信号线跨层比较多的地方,放置了地过孔(至少需要两个地平面)

电源和地

68.

如果电源/地平面有分割,尽量避免分割开的参考平面上有高速信号的跨越。

69.

确认电源、地能承载足够的电流。过孔数量是否满足承载要求

(估算方法:外层铜厚1oz时1A/mm线宽,内层0.5A/mm线宽,短线电流加倍)

70.

对于有特殊要求的电源,是否满足了压降的要求

71.

为降低平面的边缘辐射效应,在电源层与地层间要尽量满足20H原则。

(条件允许的话,电源层的缩进得越多越好)。

72.

如果存在地分割,分割的地是否不构成环路?

73.

相邻层不同的电源平面是否避免了交叠放置?

74.

保护地、-48V地及GND的隔离是否大于2mm?

75.

-48V地是否只是-48V的信号回流,没有汇接到其他地?如果做不到请在备注栏说明原因。

76.

靠近带连接器面板处是否布10~20mm的保护地,并用双排交错孔将各层相连?

77.

电源线与其他信号线间距是否距离满足安规要求?

禁布区

78.

金属壳体器件和散热器件下,不应有可能引起短路的走线、铜皮和过孔

79.

安装螺钉或垫圈的周围不应有可能引起短路的走线、铜皮和过孔;螺钉孔按照星月孔设计;周围禁布距离满足20mil以上

80.

设计要求中预留位置是否有走线

81.

非金属化孔内层离线路及铜箔间距应大于0.5mm(20mil),外层0.3mm(12mil)

单板起拔扳手轴孔内层离线路及铜箔间距应大于2mm(80mil)

82.

铜皮和线到板边 推荐为大于2mm 最小为0.5mm

83.

内层地层铜皮到板边 1 ~ 2 mm, 最小为0.5mm

焊盘出线

84.

对于两个焊盘安装的CHIP元件(0805及其以下封装),如电阻、电容,与其焊盘连接的印制线最好从焊盘中心位置对称引出,且与焊盘连接的印制线必须具有一样的宽度,对于线宽小于0.3mm(12mil)的引出线可以不考虑此条规定

与较宽印制线连接的焊盘,中间最好通过一段窄的印制线过渡?(0805及其以下封装)

86.

线路应尽量从SOIC、PLCC、QFP、SOT等器件的焊盘的两端引出

丝印

87.

器件位号是否遗漏,位置是否能正确标识器件

88.

器件位号命名是否准确,按照分类否符合要求

89.

确认器件的管脚排列顺序, 第1脚标志,器件的极性标志,连接器的方向标识的正确性

90.

母板与子板的插板方向标识是否对应

91.

背板是否正确标识了槽位名、槽位号、端口名称、护套方向

92.

确认设计要求的丝印添加是否正确

93.

确认已经放置有防静电和射频板标识(射频板使用)

编码/条码

94.

确认PCB编码正确,且根据自身公司情况,设置PCB编码规范。

95.

确认单板的PCB编码位置和层面正确(应该在A面左上方,丝印层)

96.

确认背板的PCB编码位置和层面正确(应该在B右上方,外层铜箔面)

97.

确认有条码激光打印白色丝印标示区

98.

确认条码框下面没有连线和大于0.5mm导通孔

99.

确认条码白色丝印区外20mm范围内不能有高度超过25mm的元器件

过孔

100.

在回流焊面,过孔不能设计在焊盘上。(正常开窗的过孔与焊盘的间距应大于0.5mm(20mil),绿油覆盖的过孔与焊盘的间距应大于0.1 mm(4mil),方法:将Same Net DRC打开,查DRC,然后关闭Same Net DRC)

101.

过孔的排列不宜太密,避免引起电源、地平面大范围断裂

102.

钻孔的过孔孔径最好不小于板厚的1/10

103.

器件布放率是否100%,布通率是否100%(没有达到100%的需要在备注中说明)

104.

Dangling线是否已经调整到最少,对于保留的Dangling线已做到一一确认;

105.

工艺科反馈的工艺问题是否已仔细查对

大面积铜箔

106.

对于Top、bottom上的大面积铜箔,如无特殊的需要,应用网格铜[单板用斜网,背板用正交网,线宽0.3mm(12 mil)、间距0.5mm(20mil)]

107.

大面积铜箔区的元件焊盘,应设计成花焊盘,以免虚焊;有电流要求时,则先考虑加宽花焊盘的筋,再考虑全连接

108.

大面积布铜时,应该尽量避免出现没有网络连接的死铜(孤岛)

109.

大面积铜箔还需注意是否有非法连线,未报告的DRC

测试点

110.

各种电源、地的测试点是否足够(每2A电流至少有一个测试点)

111.

确认没有加测试点的网络都是经确认可以进行精简的

112.

确认没有在生产时不安装的插件上设置测试点

113.

Test Via、Test Pin是否已Fix(适用于测试针床不变的改板)

D

R

C

114.

Test via 和Test pin 的Spacing Rule应先设置成推荐的距离,检查DRC,若仍有DRC存在,再用最小距离设置检查DRC

115.

打开约束设置为打开状态,更新DRC,查看DRC中是否有不允许的错误

116.

确认DRC已经调整到最少,对于不能消除DRC要一一确认;

光学定位

117.

确认有贴装元件的PCB面已有光学定位符号

118.

确认光学定位符号未压线(丝印和铜箔走线)

119.

光学定位点背景需相同,确认整板使用光学点其中心离边≥5mm

120.

确认整板的光学定位基准符号已赋予坐标值(建议将光学定位基准符号以器件的形式放置),且是以毫米为单位的整数值。

121.

管脚中心距<0.5mm的IC,以及中心距小于0.8 mm(31 mil)的BGA器件,应在元件对角线附近位置设置光学定位点

阻焊检查

122.

确认是否有特殊需求类型的焊盘都正确开窗(尤其注意硬件的设计要求)

123.

BGA下的过孔是否处理成盖油塞孔

124.

除测试过孔外的过孔是否已做开小窗或盖油塞孔

125.

光学定位点的开窗是否避免了露铜和露线

126.

电源芯片、晶振等需铜皮散热或接地屏蔽的器件,是否有铜皮并正确开窗。由焊锡固定的器件应有绿油阻断焊锡的大面积扩散

出加工文件

钻孔图

127.

Notes的PCB板厚、层数、丝印的颜色、翘曲度,以及其他技术说明是否正确

128.

叠板图的层名、叠板顺序、介质厚度、铜箔厚度是否正确;是否要求作阻抗控制,描述是否准确。叠板图的层名与其光绘文件名是否一致

129.

将设置表中的Repeat code 关掉,钻孔精度应设置为2-5

130.

孔表和钻孔文件是否最新 (改动孔时,必须重新生成)

131.

孔表中是否有异常的孔径,压接件的孔径是否正确;孔径公差是否标注正确

132.

要塞孔的过孔是否单独列出,并标注“filled vias”

光绘

133.

光绘文件输出尽量采用RS274X格式,且精度应设置为5:5

134.

art_aper.txt 是否已最新(274X可以不需要)

135.

输出光绘文件的log文件中是否有异常报告

136.

负片层的边缘及孤岛确认

137.

使用光绘检查工具检查光绘文件是否与PCB 相符(改板要使用比对工具进行比对)

文件齐套


138.

PCB文件:产品型号_规格_单板代号_版本号.brd

139.

背板的衬板设计文件:产品型号_规格_单板代号_版本号-CB[-T/B].brd

140.

PCB加工文件:PCB编码.zip(含各层的光绘文件、光圈表、钻孔文件及ncdrill.log;拼板还需要有工艺提供的拼板文件*.dxf)

背板还要附加衬板文件:PCB编码-CB[-T/B].zip(含drill.art、*.drl、ncdrill.log)

141.

工艺设计文件:产品型号_规格_单板代号_版本号-GY.doc

142.

SMT坐标文件:产品型号_规格_单板代号_版本号-SMT.txt

(输出坐标文件时,确认选择 Body center,只有在确认所有SMD器件库的原点是器件中心时,才可选Symbol origin)

143.

PCB板结构文件:产品型号_规格_单板代号_版本号-MCAD.zip(包含结构工程师提供的.DXF与.EMN文件)

144.

测试文件:产品型号_规格_单板代号_版本号-TEST.ZIP(包含testprep.log 和 untest.lst或者*.drl测试点的坐标文件)

145.

归档图纸文件:产品型号规格-单板名称-版本号.pdf

(包括:封面、首页、各层丝印、各层线路、钻孔图、背板含有衬板图)

标准化

146.

确认封面、首页信息正确

147.

确认图纸序号(对应PCB各层顺序分配)正确的

151.

确认图纸框上PCB编码是正确的


END

来源:硬件十万个为什么


版权归原作者所有,如有侵权,请联系删除。

推荐阅读
一个蓝牙实战项目的掏肺总结
一款只有1300行代码的轻量级C语言网络库
为什么局域网IP通常以192.168开头,而不是1.2或193.169?

→点关注,不迷路←

嵌入式ARM 关注这个时代最火的嵌入式ARM,你想知道的都在这里。
评论 (0)
  •   北京华盛恒辉机场保障能力评估系统软件深度解析   在航空运输业快速发展的背景下,机场保障任务愈发复杂,传统人工评估方式已无法满足高效精准的管理需求。机场保障能力评估系统软件作为提升机场运行效率、保障飞行安全的关键工具,其重要性日益凸显。   应用案例   目前,已有多个机场保障能力评估系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润机场保障能力评估系统。这些成功案例为机场保障能力评估系统的推广和应用提供了有力支持。   一、系统功能模块   数据采集与整合模块  
    华盛恒辉l58ll334744 2025-04-22 10:28 111浏览
  •   卫星通信效能评估系统平台全面解析   北京华盛恒辉卫星通信效能评估系统平台是衡量卫星通信系统性能、优化资源配置、保障通信服务质量的关键技术工具。随着卫星通信技术的快速发展,特别是低轨卫星星座、高通量卫星和软件定义卫星的广泛应用,效能评估系统平台的重要性日益凸显。以下从技术架构、评估指标、关键技术、应用场景及发展趋势五个维度进行全面解析。   应用案例   目前,已有多个卫星通信效能评估系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润卫星通信效能评估系统。这些成功案例为卫
    华盛恒辉l58ll334744 2025-04-22 16:34 92浏览
  • 引言:工业安全与智能化需求的双重驱动在工业安全、环境保护及家庭安防领域,气体泄漏引发的安全事故始终是重大隐患。随着传感器技术、物联网及语音交互的快速发展,气体检测报警器正朝着智能化、低成本、高可靠的方向演进。WT588F02B-8S语音芯片,以“离在线语音更换+多协议通信”为核心优势,为气体检测报警器提供了一套高效、灵活的低成本语音解决方案,助力开发者快速响应市场需求。产品功能与市场需求1. 核心功能:从监测到预警的全流程覆盖实时气体监测:支持一氧化碳、臭氧、硫化氢等多种气体浓度检测,精度可达p
    广州唯创电子 2025-04-22 09:14 81浏览
  •   电磁干扰抑制系统平台深度解析   一、系统概述   北京华盛恒辉电磁干扰抑制系统在电子技术快速发展、电磁环境愈发复杂的背景下,电磁干扰(EMI)严重影响电子设备性能、稳定性与安全性。电磁干扰抑制系统平台作为综合性解决方案,通过整合多元技术手段,实现对电磁干扰的高效抑制,确保电子设备稳定运行。   应用案例   目前,已有多个电磁干扰抑制系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁干扰抑制系统。这些成功案例为电磁干扰抑制系统的推广和应用提供了有力支持。   二
    华盛恒辉l58ll334744 2025-04-22 15:27 116浏览
  • 近期,金融界消息称,江西万年芯微电子有限公司申请一项名为“基于预真空腔体注塑的芯片塑封方法及芯片”的专利。此项创新工艺的申请,标志着万年芯在高端芯片封装领域取得重要突破,为半导体产业链提升注入了新动能。专利摘要显示,本发明公开了一种基于预真空腔体注塑的芯片塑封方法,方法包括将待塑封的大尺寸芯片平铺于下模盒腔体内的基板并将大尺寸芯片的背向表面直接放置于基板上以进行基板吸附;将上模盒盖合于下模盒形成塑封腔,根据基板将塑封腔分为上型腔以及下型腔;将下型腔内壁与大尺寸芯片间的空隙进行树脂填充;通过设置于
    万年芯 2025-04-22 13:28 81浏览
  • 4 月 19 日,“增长无界・智领未来” 第十六届牛商大会暨电子商务十大牛商成果报告会在深圳凤凰大厦盛大举行。河南业之峰科技股份有限公司总经理段利强——誉峰变频器强哥凭借在变频器领域的卓越成就,荣膺第十六届电子商务十大牛商,携誉峰变频器品牌惊艳亮相,以十几年如一日的深耕与创新,书写着行业传奇。图 1:誉峰变频器强哥在牛商大会领奖现场,荣耀时刻定格牛商大会现场,誉峰变频器强哥接受了多家媒体的专访。面对镜头,他从容分享了自己在变频器行业二十年的奋斗历程与心路感悟。谈及全域营销战略的成功,誉峰变频器强
    电子与消费 2025-04-22 13:22 114浏览
  •   北京华盛恒辉基于GIS的电磁态势可视化系统软件是将地理空间信息与电磁态势数据相结合,通过图形化手段直观展示电磁环境态势的系统。这类软件在军事、通信、无线电管理等领域具有广泛应用,能够辅助用户进行电磁频谱分析、干扰监测、态势研判和决策支持。以下是关于此类系统的详细介绍:   应用案例   目前,已有多个电磁态势可视化系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁态势可视化系统。这些成功案例为电磁态势可视化系统的推广和应用提供了有力支持。   一、系统功能   电磁
    华盛恒辉l58ll334744 2025-04-22 11:44 86浏览
  •   电磁兼容(EMC)故障诊断系统软件解析   北京华盛恒辉电磁兼容故障诊断系统软件是攻克电子设备电磁干扰难题的专业利器。在电子设备复杂度攀升、电磁兼容问题频发的背景下,该软件于研发、测试、生产全流程中占据关键地位。以下为其详细介绍:   应用案例   目前,已有多个电磁兼容故障诊断系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁兼容故障诊断系统。这些成功案例为电磁兼容故障诊断系统的推广和应用提供了有力支持。   一、软件核心功能   干扰与敏感分析:深度剖析电磁干
    华盛恒辉l58ll334744 2025-04-22 14:53 106浏览
  • 据国际精益六西格玛研究所(ILSSI)成员大卫·哈钦斯(David Hutchins)的回忆,在“六西格玛”名称出现前,摩托罗拉组建了约100个质量改进团队,接受朱兰博士制作的16盘录像带培训,名为《朱兰论质量改进》(Juran on Quality Improvement),为了推广这种严谨的分析方法(朱兰博士视频中的核心内容),摩托罗拉前首席执行官鲍勃·加尔文创造了“六西格玛”这一标签,用以表彰这种“最顶尖"的方法。大卫·哈钦斯(David Hutchins)是朱兰博士的好友,也为他的工作做
    优思学院 2025-04-22 12:03 93浏览
  •   电磁兼容故障诊断系统平台深度解析   北京华盛恒辉电磁兼容(EMC)故障诊断系统平台是解决电子设备在复杂电磁环境下性能异常的核心工具。随着电子设备集成度提升与电磁环境复杂化,EMC 问题直接影响设备可靠性与安全性。以下从平台架构、核心功能、技术实现、应用场景及发展趋势展开全面剖析。   应用案例   目前,已有多个电磁兼容故障诊断系统在实际应用中取得了显著成效。例如,北京华盛恒辉和北京五木恒润电磁兼容故障诊断系统。这些成功案例为电磁兼容故障诊断系统的推广和应用提供了有力支持。  
    华盛恒辉l58ll334744 2025-04-22 14:29 108浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦