综述:基于非线性频率变换的长波红外激光器研究进展

MEMS 2022-10-19 00:00

8-12μm长波红外激光位于大气传输窗口和人眼安全范围,在大气介质中传输具有更高的透过率,因此在定向红外对抗、环境监测和激光雷达等领域具有重要应用,同时也广泛应用于外科手术等激光医疗领域。目前获得8-12μm长波红外激光的方法主要包括以二氧化碳(CO2)激光器和半导体量子级联激光器(quantum cascade laser,QCL)为代表的增益介质“直接辐射”,以及以二阶非线性频率变换(非线性光学技术)为代表的“间接辐射”,图1展示了三种方法的发展历程。

图1 二阶非线性频率变换、CO2激光器与QCL的发展状况

据麦姆斯咨询报道,近日,河北工业大学的研究人员在《光学学报》期刊上发表了以“基于非线性频率变换的长波红外激光器研究进展”为题的文章。文中对二阶非线性频率变换技术的工作原理、常用红外非线性晶体的物理和非线性光学特性、长波红外激光器的研究进展和输出特性进行了综述,同时对基于二阶和三阶非线性频率变换技术的长波红外激光器进行了总结与展望,期待能够为从事长波红外激光器的研发和工程技术人员提供参考。

用于长波红外的非线性光学晶体

目前OPG、OPO、DFG、OPA等二阶非线性频率变换技术是获取8-12μm长波红外激光的重要技术手段,其转换过程如图2所示。在目前可用于实现长波红外输出的非线性晶体中,ZGP、CdSe、GaSe等晶体发展时间长、研究较为成熟,BGSe、LGS、OP-GaAs、OP-GaP等晶体是近年来应用于长波红外频率变换的新型非线性晶体。BGSe由中国科学院在2010年首次成功制备,LGS晶体是用Li离子将传统红外非线性晶体硫镓银(AgGaS2)中Ag离子替换得到的,OP-GaAs、OP-GaP晶体是特性较为优异的准相位匹配材料。

图2 典型的二阶非线性频率变换过程示意图(a)OPG,(b)OPO,(c)DFG,(d)OPA

长波红外激光器研究进展

ZGP长波红外激光器研究进展

目前,基于ZGP晶体的长波红外激光器大多采用OPO、OPA结构,或两者结合的级联结构。由于ZGP晶体的透过率在10μm及以上时会出现明显下降,因此目前基于ZGP的长波红外激光器的输出光谱范围主要集中在8-10μm。

2015年,Yu等通过实验发现对于8μm闲频光输出,更长的OPO谐振腔长度、环型腔结构和Ⅰ类相位匹配都有助于提高输出光的光束质量。根据这一规律,实验获得的最佳光束质量因子M2在水平方向和垂直方向分别为1.22和1.20。

2019年,Liu等利用最高平均输出功率100W、波长2.09μm、重复频率10kHz的Ho:YAG激光器作为泵浦源,在基于Ⅱ类相位匹配的ZGP-OPO和Ⅰ类相位匹配的ZGP-OPA级联系统中,获得了最高平均功率为12.6W、脉冲宽度21.5ns的8.2μm激光输出,对应转换效率为12.6%,这是目前ZGP长波红外激光器取得的最高功率。

2020年,Liu等报道了9.8μm高功率长波红外ZGP-OPO结构,泵浦源采用最高平均输出功率为90W、波长2.09μm、重复频率10kHz的Ho:YAG主振荡功率放大器(master oscillator power amplifier,MOPA),ZGP晶体在基于Ⅰ类相位匹配的条件下得到了最高平均功率为3.5W、脉宽19.6ns、中心波长9.8μm的长波激光输出,转换效率3.9%;基于Ⅱ类相位配的条件下实现了9.2-11μm可调谐的长波红外激光输出。

2021年,Qian等使用最高平均功率为52W、重复频率1kHz、波长2.1μm的Ho:YAG-MOPA系统作为泵浦源,通过ZGP-OPO结构获得了最高平均输出功率为3.15W、脉宽8.1ns、中心波长8.2μm的长波红外激光输出。

BGSe长波红外激光器研究进展

在1μm激光泵浦BGSe产生长波红外激光方面,2019年,Kolker等使用波长为1.05μm、脉冲宽度16ns、重复频率100Hz的Nd:YLF激光器作为泵浦源,采用基于Ⅰ类相位匹配的线型腔BGSe-OPO结构,实验得到了2.6-10.4μm可调谐输出的红外激光,8μm处脉冲能量为14μJ,装置如图3所示。

图3 红外可调谐BGSe-OPO激光器

2020年,Yang等报道了一台8-14μm连续可调谐的高能量皮秒级BGSe-OPA长波红外激光器,BGSe晶体为Ⅰ类相位匹配,泵浦源为重复频率10Hz、脉冲宽度30ps、波长1064nm的Nd:YAG激光器,种子光(信号光)波长为1151-1227nm连续可调谐、能量范围0-200μJ,实验最终得到了脉冲能量140-230μJ、波长8-14μm连续可调谐的长波红外激光输出,9.5μm处能量最高为230μJ,脉冲宽度约22.3ps。同年,Xu等使用脉冲能量为39.5mJ、波长1.06μm、重复频率10Hz、脉冲宽度10ns的Nd:YAG激光器作为泵浦源,采用了基于Ⅰ类相位匹配的BGSe-OPO结构,最终得到了8-14μm可调谐的长波红外激光输出,11μm处脉冲能量最高为1.05mJ,转换效率2.65%。

除了1μm光源泵浦外,BGSe同样可以使用2μm等更长波长的泵浦源,且理论上具有更高的频率转换效率。

CdSe和GaSe长波红外激光器研究进展

目前,CdSe晶体仅限于实现Ⅱ类相位匹配,其长波红外激光器的输出波段主要覆盖在10-12μm,且可应用的频率变换技术仅限于OPO。2016年,Yuan等报道了一种信号光谐振CdSe-OPO结构,采用的泵浦源为重复频率500Hz、波长2.09μm的Ho:YAG激光器,最终实现了10-11.1μm的可调谐红外激光输出,10.28μm处功率为140mW,脉冲宽度19ns,转换效率2%。

2017年,Yuan等报道了一种输出波长12.07μm、最高输出功率为170mW的CdSe-OPO结构,该结构以Ho:YAG激光器作为泵浦源,实现了调谐范围10.24-12.07μm的输出,重复频率为1.2kHz。

2020年,Yuan团队报道了一种具有连续波种子注入和腔内光束扩展功能的闲频光谐振CdSe-OPO结构,如图4所示,输出光的调谐范围9.9-10.7μm,在10.1μm处获得了1.05W最高平均功率,重复频率1kHz,脉冲宽度24.4ns,转换效率4.69%。同年,Chen等报道了一种由2.58μm连续激光器注入的闲频光谐振CdSe-OPO结构,该激光器在11.01μm处获得了802mW的平均输出功率。

图4 可调谐CdSe-OPO长波红外激光器

2021年,Yang等使用波长为2.09μm、重频1kHz的Ho:YAG-MOPA系统作为CdSe-OPO结构的泵浦源,实验中使用了两块不同尺寸的CdSe晶体,分别获得了在10.15μm处1.03W的最高平均输出功率和11μm处1.18W的最高平均输出功率。

以IPDFG和OPA技术获得高重频、飞秒级超短脉冲的长波红外激光是近年GaSe长波红外激光器研究内容中的热点。2019年,Butler等使用2μm飞秒级光纤激光器作为泵浦源,采用了基于Ⅰ类相位匹配的GaSe-IPDFG结构,如图5所示,获得了最高平均功率0.5W、重复频率50MHz、脉冲宽度43fs的6-18μm宽光谱输出,这是目前GaSe长波红外激光器能实现的最高平均功率和重复频率。

图5 高重频、宽光谱GaSe-IPDFG长波红外激光器

LGS长波红外激光器研究进展

LGS晶体是传统红外非线性晶体硫镓银(AgGaS2)将自身中Ag离子替换为Li离子得到的。2019年,Chen等取得了目前LGS长波红外激光器的最短脉冲宽度为32fs,其重复频率50kHz、脉冲能量220nJ、输出波长5-11μm的宽光谱,实验装置采用了基于Ⅰ类相位匹配的LGS-OPA结构,如图6所示,泵浦光中心波长1026nm、重复频率50kHz,脉冲宽度270fs、脉冲能量187μJ。同年,Qu等取得了目前LGS长波红外激光器的最高平均输出功率140mW,其输出波长为9μm,重复频率10kHz,脉冲宽度142fs。

图6 LGS-OPA长波红外激光器

OP-GaAs和OP-GaP长波红外激光器研究进展

目前对于OP-GaAs长波红外激光器的研究,脉冲宽度主要在纳秒级、平均功率在毫瓦级。2016年,Wueppen等采用了基于环形腔的OP-GaAs-OPO结构,OP-GaAs的周期长度为74.5μm,实验获得了OP-GaAs长波红外激光器目前最高的平均功率812mW,中心波长10.6μm,重复频率50kHz,脉冲宽度100ns,实验所用泵浦源波长1.95μm,实验装置如图7所示。

图7 OP-GaAs-OPO长波红外激光器

近年来对于OP-GaP长波红外激光器的研究中,激光器的重复频率主要在百兆赫兹级,脉冲宽度在飞秒级。2021年,Schunemann等使用波长1040nm的飞秒级光纤激光器,基于OP-GaP-OPO结构,OP-GaP周期长度为21.0μm,实验获得了最高平均功率60mW、重复频率100MHz、3.9-12μm可调谐的飞秒级红外激光输出。

总结

近年来,基于上述非线性晶体的长波红外激光器在短脉冲宽度、高重频、输出波长调谐和高功率、脉冲能量等方面有着出色的表现。

脉冲宽度方面,长波红外激光器覆盖了飞秒级、皮秒级、纳秒级,GaSe、LGS、OP-GaP长波红外激光器可实现飞秒脉冲输出,BGSe长波红外激光器可实现皮秒脉冲输出,ZGP、BGSe、CdSe、OP-GaAs长波红外激光器均可实现纳秒脉冲输出。

重复频率方面,长波红外激光器能实现赫兹级、千赫兹级、兆赫兹级输出,LGS、OP-GaP长波红外激光器最高可达到百兆赫兹重复频率的输出。

现阶段长波红外激光的输出能量主要处在微焦和毫焦级。其中,ZGP、BGSe 和CdSe晶体得益于自身优异的性质,基于这三种晶体的长波红外激光器在脉冲能量上处在较高水平,ZGP、BGSe和CdSe长波红外激光器获得的最大脉冲能量分别为为3.15mJ、4.5mJ、1.18mJ;基于GaSe、LGS、OP-GaAs几种晶体的长波红外激光器获得的最大脉冲能量分别为3.4μJ、14μJ、16.2μJ;OP-GaP长波红外激光器获得的脉冲能量最小,仅能获得纳焦级的脉冲能量输出。

延伸阅读:

《光谱成像市场和趋势-2022版》

《带间级联激光器和量子级联激光器技术及市场-2021版》

《小型、微型和芯片级光谱仪技术及市场-2020版》

MEMS 中国首家MEMS咨询服务平台——麦姆斯咨询(MEMS Consulting)
评论 (0)
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 341浏览
  • 多功能电锅长什么样子,主视图如下图所示。侧视图如下图所示。型号JZ-18A,额定功率600W,额定电压220V,产自潮州市潮安区彩塘镇精致电子配件厂,铭牌如下图所示。有两颗螺丝固定底盖,找到合适的工具,拆开底盖如下图所示。可见和大部分市场的加热锅一样的工作原理,手绘原理图,根据原理图进一步理解和分析。F1为保险,250V/10A,185℃,CPGXLD 250V10A TF185℃ RY 是一款温度保险丝,额定电压是250V,额定电流是10A,动作温度是185℃。CPGXLD是温度保险丝电器元件
    liweicheng 2025-05-05 18:36 210浏览
  • ‌一、高斯计的正确选择‌1、‌明确测量需求‌‌磁场类型‌:区分直流或交流磁场,选择对应仪器(如交流高斯计需支持交变磁场测量)。‌量程范围‌:根据被测磁场强度选择覆盖范围,例如地球磁场(0.3–0.5 G)或工业磁体(数百至数千高斯)。‌精度与分辨率‌:高精度场景(如科研)需选择误差低于1%的仪器,分辨率需匹配微小磁场变化检测需求。2、‌仪器类型选择‌‌手持式‌:便携性强,适合现场快速检测;‌台式‌:精度更高,适用于实验室或工业环境。‌探头类型‌:‌横向/轴向探头‌:根据磁场方向选择,轴向探头适合
    锦正茂科技 2025-05-06 11:36 316浏览
  • UNISOC Miracle Gaming奇迹手游引擎亮点:• 高帧稳帧:支持《王者荣耀》等主流手游90帧高画质模式,连续丢帧率最高降低85%;• 丝滑操控:游戏冷启动速度提升50%,《和平精英》开镜开枪操作延迟降低80%;• 极速网络:专属游戏网络引擎,使《王者荣耀》平均延迟降低80%;• 智感语音:与腾讯GVoice联合,弱网环境仍能保持清晰通话;• 超高画质:游戏画质增强、超级HDR画质、游戏超分技术,优化游戏视效。全球手游市场规模日益壮大,游戏玩家对极致体验的追求愈发苛刻。紫光展锐全新U
    紫光展锐 2025-05-07 17:07 86浏览
  • 5小时自学修好BIOS卡住问题  更换硬盘故障现象:f2、f12均失效,只有ESC和开关机键可用。错误页面:经过AI的故障截图询问,确定是机体内灰尘太多,和硬盘损坏造成,开机卡在BIOS。经过亲手拆螺丝和壳体、排线,跟换了新的2.5寸硬盘,故障排除。理论依据:以下是针对“5小时自学修好BIOS卡住问题+更换硬盘”的综合性解决方案,结合硬件操作和BIOS设置调整,分步骤说明:一、判断BIOS卡住的原因1. 初步排查     拔掉多余硬件:断开所有外接设备(如
    丙丁先生 2025-05-04 09:14 89浏览
  • 这款无线入耳式蓝牙耳机是长这个样子的,如下图。侧面特写,如下图。充电接口来个特写,用的是卡座卡在PCB板子上的,上下夹紧PCB的正负极,如下图。撬开耳机喇叭盖子,如下图。精致的喇叭(HY),如下图。喇叭是由电学产生声学的,具体结构如下图。电池包(AFS 451012  21 12),用黄色耐高温胶带进行包裹(安规需求),加强隔离绝缘的,如下图。451012是电池包的型号,聚合物锂电池+3.7V 35mAh,详细如下图。电路板是怎么拿出来的呢,剪断喇叭和电池包的连接线,底部抽出PCB板子
    liweicheng 2025-05-06 22:58 222浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 346浏览
  • 二位半 5线数码管的驱动方法这个2位半的7段数码管只用5个管脚驱动。如果用常规的7段+共阳/阴则需要用10个管脚。如果把每个段看成独立的灯。5个管脚来点亮,任选其中一个作为COM端时,另外4条线可以单独各控制一个灯。所以实际上最多能驱动5*4 = 20个段。但是这里会有一个小问题。如果想点亮B1,可以让第3条线(P3)置高,P4 置低,其它阳极连P3的灯对应阴极P2 P1都应置高,此时会发现C1也会点亮。实际操作时,可以把COM端线P3设置为PP输出,其它线为OD输出。就可以单独控制了。实际的驱
    southcreek 2025-05-07 15:06 91浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 513浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 622浏览
  • 随着智能驾驶时代到来,汽车正转变为移动计算平台。车载AI技术对存储器提出新挑战:既要高性能,又需低功耗和车规级可靠性。贞光科技代理的紫光国芯车规级LPDDR4存储器,以其卓越性能成为国产芯片产业链中的关键一环,为智能汽车提供坚实的"记忆力"支持。作为官方授权代理商,贞光科技通过专业技术团队和完善供应链,让这款国产存储器更好地服务国内汽车厂商。本文将探讨车载AI算力需求现状及贞光科技如何通过紫光国芯LPDDR4产品满足市场需求。 车载AI算力需求激增的背景与挑战智能驾驶推动算力需求爆发式
    贞光科技 2025-05-07 16:54 75浏览
  • 某国产固态电解的2次和3次谐波失真相当好,值得一试。(仅供参考)现在国产固态电解的性能跟上来了,值得一试。当然不是随便搞低端的那种。电容器对音质的影响_电子基础-面包板社区  https://mbb.eet-china.com/forum/topic/150182_1_1.html (右键复制链接打开)电容器对音质的影响相当大。电容器在音频系统中的角色不可忽视,它们能够调整系统增益、提供合适的偏置、抑制电源噪声并隔离直流成分。然而,在便携式设备中,由于空间、成本的限
    bruce小肥羊 2025-05-04 18:14 160浏览
  • 想不到短短几年时间,华为就从“技术封锁”的持久战中突围,成功将“被卡脖子”困境扭转为科技主权的主动争夺战。众所周知,前几年技术霸权国家突然对华为发难,导致芯片供应链被强行掐断,海外市场阵地接连失守,恶意舆论如汹涌潮水,让其瞬间陷入了前所未有的困境。而最近财报显示,华为已经渡过危险期,甚至开始反击。2024年财报数据显示,华为实现全球销售收入8621亿元人民币,净利润626亿元人民币;经营活动现金流为884.17亿元,同比增长26.7%。对比来看,2024年营收同比增长22.42%,2023年为7
    用户1742991715177 2025-05-02 18:40 193浏览
我要评论
0
0
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦