适合新手的RISC-V入门基础知识

strongerHuang 2022-10-18 08:20
关注+星标公众,不错过精彩内容
转自 | 漫谈嵌入式

在谈到 RISC-V 之前,我们先梳理几个概念

1. 芯片

芯片 是所有半导体元器件的统称,它是把一定数量的常用电子元件(如电阻,电容,晶体管等),通过半导体工艺集成在一起,具有特定功能的电路。

2. CPU

cpu 是芯片的一种,它里面包含了控制部件和运算部件,即中央处理器。1971 年, Intel 将运算器和控制器集成到一个芯片上,称为4004 微处理器,这标志着CPU 的诞生。

CPU 的工作流程分为以下5个阶段:

  • 取指令
  • 指令译码
  • 执行指令
  • 访存读取数据
  • 结果写回

指令和数据统一存储在内存中,数据与指令需要从统一的存储空间存取,经由共同的总线传输,无法并行读取数据和指令。冯诺依曼结构

3. 冯诺依曼结构

冯·诺依曼结构也称普林斯顿结构,是一种将程序指令存储器和数据存储器合并在一起的存储器结构。

程序指令存储地址和数据存储地址指向同一个存储器的不同物理位置,因此程序指令和数据的宽度相同,如英特尔公司的8086中央处理器的程序指令和数据都是16位宽。

数学家冯·诺依曼提出了计算机制造的三个基本原则,即采用二进制逻辑、程序存储执行以及计算机由五个部分组成:

  • 运算器
  • 控制器
  • 存储器
  • 输入设备
  • 输出设备

现代计算机发展所遵循的基本结构形式始终是冯·诺依曼机结构。这种结构特点是“程序存储,共享数据,顺序执行”,需要 CPU 从存储器取出指令和数据进行相应的计算

(1)单处理机结构,机器以运算器为中心; 

(2)采用程序存储思想; 

(3)指令和数据一样可以参与运算; 

(4) 数据以二进制表示; 

(5)将软件和硬件完全分离; 

(6) 指令由操作码和操作数组成; 

(7)指令顺序执行。

这套理论被称为冯·诺依曼体系结构。

4. 哈佛结构

哈佛结构是一种将程序指令存储和数据存储分开的存储器结构,如下图所示。中央处理器首先到程序指令存储器中读取程序指令内容,解码后得到数据地址,再到相应的数据存储器中读取数据,并进行下一步的操作(通常是执行)。

程序指令存储和数据存储分开,可以使指令和数据有不同的数据宽度,如Microchip公司的PIC16芯片的程序指令是14位宽度,而数据是8位宽度

哈佛结构的微处理器通常具有较高的执行效率。其程序指令和数据指令分开组织和存储的,执行时可以预先读取下一条指令。

哈佛结构是指程序和数据空间独立的体系结构, 目的是为了减轻程序运行时的访存瓶颈。

哈佛结构能基本上解决取指和取数的冲突问题。

5. 混合式结构

  • 使用两个独立的存储器模块,分别存储指令和数据,每个存储模块都不允许指令和数据并存;
  • 具有一条独立的地址总线和一条独立的数据总线,利用公用地址总线访问两个存储模块(程序存储模块和数据存储模块),公用数据总线则被用来完成程序存储模块或数据存储模块与CPU之间的数据传输;
  • 两条总线由程序存储器和数据存储器分时共用。

6. CISC

从前面的内容中,我们已经得知 CPU 就是不断的执行指令,来实现程序的执行,最后实现相应的功能。但是一颗CPU 能实现多少条指令,每条指令完成多少功能,却是值得细细考量的问题。

CISC的英文全称为“Complex InstrucTIon Set Computer”,即“复杂指令系统计算机”,从计算机诞生以来,人们一直沿用CISC指令集方式。早期的桌面软件是按CISC设计的,并一直沿续到现在。目前,桌面计算机流行的x86体系结构即使用CISC。

CISC 的优势在于,用少量的指令就能实现非常多的功能,程序自身大小也会下降,减少内存空间占用。

缺点:这些复杂指令集,包含的指令数量多且功能复杂,设计复杂。

7. RISC

RISC的英文全称为“Reduced InstrucTIon Set Computer”,即“精简指令集计算机”,是一种执行较少类型计算机指令的微处理器,起源于80年代的MIPS主机(即RISC机),RISC机中采用的微处理器统称RISC处理器。

这样一来,它能够以更快的速度执行操作(每秒执行更多百万条指令,即MIPS)。因为计算机执行每个指令类型都需要额外的晶体管和电路元件,计算机指令集越大就会使微处理器更复杂,执行操作也会更慢。

RISC 设计方案非常简约,通常有20 多条简化的指令集。每条指令长度固定,由专用的加载和储存指令用于访问内存,减少了内存的寻址方式,大多数运算指令只能访问操作寄存器。

CPU 中配有大量的寄存器,这些指令的选取都是工程中使用频率最高的指令。由于指令长度一致,功能单一,操作依赖于寄存器,这些特性使得CPU 指令预取、分支预测、指令流水线等部件的效能大大发挥,几乎一个时钟周期能执行多条指令

RISC 的代表产品是 ARM 和 RISC-V。现在,两者已经没有明显的界限了,开始相互融合了

8. 流水线

谈到指令并行,就不得不谈到CPU 核心的流水线。现代处理器都是流水线结构。

流水线(Pipeline)技术是指程序在执行时候多条指令重叠进行操作的一种准并行处理实现技术。通俗的讲将一个时序过程,分解成若干个子过程,每个过程都能有效的与其他子过程同时执行。这种思想最初是在RISC的架构中出现的,旨在提高处理器处理效率,争取在一个时钟周期中完成一条指令。

一般常见的5级流水线有:

  • 取指:指令取指(Instruction Fetch)是指将指令从存储器中读取出来的过程。
  • 译码:指令译码(Instruction Decode)是指将存储器中取出的指令进行翻译的过程。经过译码之后得到指令需要的操作数寄存器索引,可以使用此索引从通用寄存器组(Register File)中将操作数读出。
  • 执行:指令译码之后所需要进行的计算类型都已得知,并且已经从通用寄存器组中读取出了所需的操作数,那么接下来便进行指令执行(Instruction Execute)。指令执行是指对指令进行真正运算的过程。譬如,如果指令是一条加法运算指令,则对操作数进行加法操作;如果是减法运算指令,则进行减法操作。在“执行”阶段的最常见部件为算术逻辑部件运算器(Arithmetic Logical Unit,ALU),作为实施具体运算的硬件功能单元。
  • 访存:存储器访问指令往往是指令集中最重要的指令类型之一,访存(Memory Access)是指存储器访问指令将数据从存储器中读出,或者写入存储器的过程。
  • 写回:写回(Write-Back)是指将指令执行的结果写回通用寄存器组的过程。如果是普通运算指令,该结果值来自于“执行”阶段计算的结果;如果是存储器读指令,该结果来自于“访存”阶段从存储器中读取出来的数据。

无流水线:

有流水线:

它增加了四组寄存器,每一个流水线级数内部都有各自的组合逻辑数据通路,彼此之间没有复用资源,因此,其面积开销是比较大的,但是由于可以让不同的流水线级数同时做不同的事情,而达到流水的效果,提高了性能,优化了时序,增加了吞吐率。

9. RISC-V

在了解了 RISC 和 CISC 两种计算机指令设计架构后。我们来看看 RISC-V。

RISC-V 的 “V”, 有两层意思,一方面代表第5代 RISC;另一方面, “V”取Variation 之意代表变化。

9.1 RISC-V 是什么?

RISC-V 是一套开放许可证书、免费的、由基金维护的、一个整数运算指令集外加多个扩展指令集的CPU 结构规范(ISA)。

整数运算指令集 + 扩展指令集

任何硬件开发商或者组织都可以免费使用这套规范,构建CPU 芯片产品。

9.2 指令集命名方式

以RV 为2前缀,然后是位宽,最后代表是指令集的字母集合:

RV[###][abc......xyz]
符号说明
RVRISC-V 缩写
[###]用于标识处理器位宽,取值[32, 64,128],也就是处理器的寄存器位宽
[abc...xyz]标识该处理器支持的指令模块集合

比如:RV64IMAC, 表示64 位 RISC-V, 支持整数指令、乘除法指令、原子指令和压缩指令。

9.3 指令集模块

指令集模块是一款CPU架构的主要组成部分,是CPU 和 上层软件交互的核心,也是cpu主要功能体现。

RISC-V 规范只定义了CPU 需要包含的基础整型操作指令:

  • 整型的储存
  • 加载
  • 加减
  • 逻辑
  • 移位
  • 分支
  • 等。

其他指令为可选指令或者用户扩展指令。比如:

  • 取模
  • 单精度浮点
  • 双精度浮点
  • 压缩
  • 原子指令
  • 等。

扩展指令是芯片工程师根据需求自定义。

所以 RISC-V 采用的是模块化的指令集,易于扩展、组装。它适用于不同的应用场景,可以降低 CPU 实现成本。

9.4 RISC-V 寄存器

指令的操作数来源于寄存器,精简指令架构的CPU,都会提供大量的寄存器。

RISC-V 的规范定义了32个通用寄存器以及一个PC寄存器,这对于RV32I、RV64I、RV128I 指令集都是一样的,只是寄存器的位宽不一样。

如果要实现支持F/D扩展指令集的CPU,则需要额外支持32个浮点寄存器。而如果实现只支持RV32E指令集的嵌入式CPU,则可以将32个通用寄存器缩减为16个通用寄存器。

寄存器ABI 名称说明
x0zero0值寄存器,硬编码为0,写入数据忽略,读取数据为0
x1ra用于返回地址(return address)
x2sp用于栈指针(stack pointer)
x3gp用于通用指针 (global pointer)
x4tp用于线程指针 (thread pointer)
x5t0用于存放临时数据或者备用链接寄存器
x6~x7t1~t2用于存放临时数据寄存器
x8s0/fp需要保存的寄存器或者帧指针寄存器
x9s1需要保存的寄存器
x10~x11a0~a1函数传递参数寄存器或者函数返回值寄存器
x12~x17a2~a7函数传递参数寄存器
x18~x27s2-s11需要保存的寄存器
x28~x31t3~t6用于存放临时数据寄存器

ABI: 应用程序二进制接口,可以理解为寄存器别名,高级语言在生成汇编会用到。

9.5 RSIC-V 特权级

不同的 指令集架构都有特权级的概念,RSIC-V 也不例外,我们来看看RISC-V 的特权级。

不同的特权级能访问的系统资源不同,高特权级的能访问低特权级的资源,反之却不行。

RISC-V 的规范文档定义了四个特权级别(privilege level),特权等级由高到低排列,如下表所示。

名称级别缩写编码
用户,应用程序特权级0U00
管理员特权级1S01
虚拟机监视特权级2H10
机器特权级3M11

一个RISC-V 硬件线程(hart),相当于一个CPU 内独立的可执行核心,在任意时刻,只能运行在某一个特权级上,这个特权级由CSR(控制和状态寄存器)指定配置。

具体分级如下:

  • 机器特权级(M):RISC-V 中 hart 可以执行的最高权限模式。在M 模式下运行的 hart,对内存、I/O 和一些必要的底层功能(启动和系统配置)有着完全的控制权。它是唯一一个所有标准RISC-V CPU 都必须实现的权限级。
  • 虚拟机监视特权级(H):为了支持虚拟机监视器而定义的特权级。
  • 管理员特权级(S):主要用于支持现代操作系统,如Linux、FreeBSD和 windows 等
  • 用户应用特权级(U):用于运行应用程序,同样也适用于嵌入式系统。

特权级的存在,是给指令加上了权力,从而去控制指令编写应用程序。应用程序只能干应用程序该干的事情,不能越权操作。操作系统则拥有更高的权力,能对系统资源进行管理

10. 总结

本文梳理了 芯片、CPU、流水线,指令与架构等基础概念,引出了RISC-V 基础介绍,简单介绍了RISC-V 由来。后续针对risc-v 会根据自身学习情况做相应介绍。

参考文档: 

riscv-privileged-20190608.pdf 

riscv-spec-20191213.pdf 

RISC-V-Reader-Chinese-v2p1.pdf

声明:本文素材来源网络,版权归原作者所有。如涉及作品版权问题,请与我联系删除。


------------ END ------------



●专栏《嵌入式工具

●专栏《嵌入式开发》

●专栏《Keil教程》

●嵌入式专栏精选教程


关注公众号回复“加群”按规则加入技术交流群,回复“1024”查看更多内容。




点击“阅读原文”查看更多分享。
strongerHuang 作者黄工,高级嵌入式软件工程师,分享嵌入式软硬件、物联网、单片机、开发工具、电子等内容。
评论 (0)
  • 随着电子元器件的快速发展,导致各种常见的贴片电阻元器件也越来越小,给我们分辨也就变得越来越难,下面就由smt贴片加工厂_安徽英特丽就来告诉大家如何分辨的SMT贴片元器件。先来看看贴片电感和贴片电容的区分:(1)看颜色(黑色)——一般黑色都是贴片电感。贴片电容只有勇于精密设备中的贴片钽电容才是黑色的,其他普通贴片电容基本都不是黑色的。(2)看型号标码——贴片电感以L开头,贴片电容以C开头。从外形是圆形初步判断应为电感,测量两端电阻为零点几欧,则为电感。(3)检测——贴片电感一般阻值小,更没有“充放
    贴片加工小安 2025-04-29 14:59 215浏览
  • 4月22日下午,备受瞩目的飞凌嵌入式「2025嵌入式及边缘AI技术论坛」在深圳深铁皇冠假日酒店盛大举行,此次活动邀请到了200余位嵌入式技术领域的技术专家、企业代表和工程师用户,共享嵌入式及边缘AI技术的盛宴!1、精彩纷呈的展区产品及方案展区是本场活动的第一场重头戏,从硬件产品到软件系统,从企业级应用到高校教学应用,都吸引了现场来宾的驻足观看和交流讨论。全产品矩阵展区展示了飞凌嵌入式丰富的产品线,从嵌入式板卡到工控机,从进口芯片平台到全国产平台,无不体现出飞凌嵌入式在嵌入式主控设备研发设计方面的
    飞凌嵌入式 2025-04-28 14:43 152浏览
  • 一、gao效冷却与控温机制‌1、‌冷媒流动设计‌采用低压液氮(或液氦)通过毛细管路导入蒸发器,蒸汽喷射至样品腔实现快速冷却,冷却效率高(室温至80K约20分钟,至4.2K约30分钟)。通过控温仪动态调节蒸发器加热功率,结合温度传感器(如PT100铂电阻或Cernox磁场不敏感传感器),实现±0.01K的高精度温度稳定性。2、‌宽温区覆盖与扩展性‌标准温区为80K-325K,通过降压选件可将下限延伸至65K(液氮模式)或4K(液氦模式)。可选配475K高温模块,满足材料在ji端温度下的性能测试需求
    锦正茂科技 2025-04-30 13:08 231浏览
  • 一、智能家居的痛点与创新机遇随着城市化进程加速,现代家庭正面临两大核心挑战:情感陪伴缺失:超60%的双职工家庭存在“亲子陪伴真空期”,儿童独自居家场景增加;操作复杂度攀升:智能设备功能迭代导致用户学习成本陡增,超40%用户因操作困难放弃高阶功能。而WTR096-16S录音语音芯片方案,通过“语音交互+智能录音”双核驱动,不仅解决设备易用性问题,更构建起家庭成员间的全天候情感纽带。二、WTR096-16S方案的核心技术突破1. 高保真语音交互系统动态情绪语音库:支持8种语气模板(温柔提醒/紧急告警
    广州唯创电子 2025-04-28 09:24 191浏览
  • 晶振在使用过程中可能会受到污染,导致性能下降。可是污染物是怎么进入晶振内部的?如何检测晶振内部污染物?我可不可以使用超声波清洗?今天KOAN凯擎小妹将逐一解答。1. 污染物来源a. 制造过程:生产环境不洁净或封装密封不严,可能导致灰尘和杂质进入晶振。b. 使用环境:高湿度、温度变化、化学物质和机械应力可能导致污染物渗入。c. 储存不当:不良的储存环境和不合适的包装材料可能引发化学物质迁移。建议储存湿度维持相对湿度在30%至75%的范围内,有助于避免湿度对晶振的不利影响。避免雨淋或阳光直射。d.
    koan-xtal 2025-04-28 06:11 143浏览
  • 浪潮之上:智能时代的觉醒    近日参加了一场课题的答辩,这是医疗人工智能揭榜挂帅的国家项目的地区考场,参与者众多,围绕着医疗健康的主题,八仙过海各显神通,百花齐放。   中国大地正在发生着激动人心的场景:深圳前海深港人工智能算力中心高速运转的液冷服务器,武汉马路上自动驾驶出租车穿行的智慧道路,机器人参与北京的马拉松竞赛。从中央到地方,人工智能相关政策和消息如雨后春笋般不断出台,数字中国的建设图景正在智能浪潮中徐徐展开,战略布局如同围棋
    广州铁金刚 2025-04-30 15:24 183浏览
  • 文/Leon编辑/cc孙聪颖‍2023年,厨电行业在相对平稳的市场环境中迎来温和复苏,看似为行业增长积蓄势能。带着对市场向好的预期,2024 年初,老板电器副董事长兼总经理任富佳为企业定下双位数增长目标。然而现实与预期相悖,过去一年,这家老牌厨电企业不仅未能达成业绩目标,曾提出的“三年再造一个老板电器”愿景,也因市场下行压力面临落空风险。作为“企二代”管理者,任富佳在掌舵企业穿越市场周期的过程中,正面临着前所未有的挑战。4月29日,老板电器(002508.SZ)发布了2024年年度报告及2025
    华尔街科技眼 2025-04-30 12:40 204浏览
  • 网约车,真的“饱和”了?近日,网约车市场的 “饱和” 话题再度引发热议。多地陆续发布网约车风险预警,提醒从业者谨慎入局,这背后究竟隐藏着怎样的市场现状呢?从数据来看,网约车市场的“过剩”现象已愈发明显。以东莞为例,截至2024年12月底,全市网约车数量超过5.77万辆,考取网约车驾驶员证的人数更是超过13.48万人。随着司机数量的不断攀升,订单量却未能同步增长,导致单车日均接单量和营收双双下降。2024年下半年,东莞网约出租车单车日均订单量约10.5单,而单车日均营收也不容乐
    用户1742991715177 2025-04-29 18:28 218浏览
  • 在智能硬件设备趋向微型化的背景下,语音芯片方案厂商针对小体积设备开发了多款超小型语音芯片方案,其中WTV系列和WT2003H系列凭借其QFN封装设计、高性能与高集成度,成为微型设备语音方案的理想选择。以下从封装特性、功能优势及典型应用场景三个方面进行详细介绍。一、超小体积封装:QFN技术的核心优势WTV系列与WT2003H系列均提供QFN封装(如QFN32,尺寸为4×4mm),这种封装形式具有以下特点:体积紧凑:QFN封装通过减少引脚间距和优化内部结构,显著缩小芯片体积,适用于智能门铃、穿戴设备
    广州唯创电子 2025-04-30 09:02 235浏览
  •  探针台的维护直接影响其测试精度与使用寿命,需结合日常清洁、环境控制、定期校准等多维度操作,具体方法如下:一、日常清洁与保养1.‌表面清洁‌l 使用无尘布或软布擦拭探针台表面,避免残留清洁剂或硬物划伤精密部件。l 探针头清洁需用非腐蚀性溶剂(如异丙醇)擦拭,检查是否弯曲或损坏。2.‌光部件维护‌l 镜头、观察窗等光学部件用镜头纸蘸取wu水jiu精从中心向外轻擦,操作时远离火源并保持通风。3.‌内部防尘‌l 使用后及时吹扫灰尘,防止污染物进入机械滑
    锦正茂科技 2025-04-28 11:45 108浏览
  • 贞光科技代理品牌紫光国芯的车规级LPDDR4内存正成为智能驾驶舱的核心选择。在汽车电子国产化浪潮中,其产品以宽温域稳定工作能力、优异电磁兼容性和超长使用寿命赢得市场认可。紫光国芯不仅确保供应链安全可控,还提供专业本地技术支持。面向未来,紫光国芯正研发LPDDR5车规级产品,将以更高带宽、更低功耗支持汽车智能化发展。随着智能网联汽车的迅猛发展,智能驾驶舱作为人机交互的核心载体,对处理器和存储器的性能与可靠性提出了更高要求。在汽车电子国产化浪潮中,贞光科技代理品牌紫光国芯的车规级LPDDR4内存凭借
    贞光科技 2025-04-28 16:52 251浏览
  • 在CAN总线分析软件领域,当CANoe不再是唯一选择时,虹科PCAN-Explorer 6软件成为了一个有竞争力的解决方案。在现代工业控制和汽车领域,CAN总线分析软件的重要性不言而喻。随着技术的进步和市场需求的多样化,单一的解决方案已无法满足所有用户的需求。正是在这样的背景下,虹科PCAN-Explorer 6软件以其独特的模块化设计和灵活的功能扩展,为CAN总线分析领域带来了新的选择和可能性。本文将深入探讨虹科PCAN-Explorer 6软件如何以其创新的模块化插件策略,提供定制化的功能选
    虹科汽车智能互联 2025-04-28 16:00 182浏览
  • 文/郭楚妤编辑/cc孙聪颖‍越来越多的企业开始蚕食动力电池市场,行业“去宁王化”态势逐渐明显。随着这种趋势的加强,打开新的市场对于宁德时代而言至关重要。“我们不希望被定义为电池的制造者,而是希望把自己称作新能源产业的开拓者。”4月21日,在宁德时代举行的“超级科技日”发布会上,宁德时代掌门人曾毓群如是说。随着宁德时代核心新品骁遥双核电池的发布,其搭载的“电电增程”技术也走进业界视野。除此之外,经过近3年试水,宁德时代在换电业务上重资加码。曾毓群认为换电是一个重资产、高投入、长周期的产业,涉及的利
    华尔街科技眼 2025-04-28 21:55 160浏览
  • 你是不是也有在公共场合被偷看手机或笔电的经验呢?科技时代下,不少现代人的各式机密数据都在手机、平板或是笔电等可携式的3C产品上处理,若是经常性地需要在公共场合使用,不管是工作上的机密文件,或是重要的个人信息等,民众都有防窃防盗意识,为了避免他人窥探内容,都会选择使用「防窥保护贴片」,以防止数据外泄。现今市面上「防窥保护贴」、「防窥片」、「屏幕防窥膜」等产品就是这种目的下产物 (以下简称防窥片)!防窥片功能与常见问题解析首先,防窥片最主要的功能就是用来防止他人窥视屏幕上的隐私信息,它是利用百叶窗的
    百佳泰测试实验室 2025-04-30 13:28 308浏览
我要评论
0
7
点击右上角,分享到朋友圈 我知道啦
请使用浏览器分享功能 我知道啦